

IS009272017B2

(12) United States Patent

Mohammadi et al.

(10) Patent No.: US 9,272,017 B2 (45) Date of Patent: *Mar. 1, 2016

(54) PHARMACEUTICAL COMPOSITIONS INCLUDING A PORTION OF THE C-TERMINUS OF FGF23

(71) Applicant: **New York University**, New York, NY

(US)

(72) Inventors: Moosa Mohammadi, Scarsdale, NY

(US); Regina Goetz, New York, NY

(US)

(73) Assignee: New York University, New York, NY

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/763,301

(22) Filed: Feb. 8, 2013

(65) **Prior Publication Data**

US 2013/0172275 A1 Jul. 4, 2013

Related U.S. Application Data

- (63) Continuation of application No. 12/915,801, filed on Oct. 29, 2010, now Pat. No. 8,889,621.
- (60) Provisional application No. 61/256,361, filed on Oct. 30, 2009.

(51)	Int. Cl.	
	A61K 38/18	(2006.01)
	A61K 38/17	(2006.01)
	A61K 45/06	(2006.01)
	G01N 30/00	(2006.01)
	G01N 21/84	(2006.01)
	G01N 33/573	(2006.01)
	G01N 33/68	(2006.01)
	A61K 31/59	(2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,648,260	Α	7/1997	Winter et al.
7,223,563			Econs et al.
7,314,618			Econs et al.
7,745,406			Econs et al.
7,947,810			Econs et al.
2002/0082205	A1	6/2002	Itoh et al.
2003/0105302	A1	6/2003	Itoh et al.

2004/0043457 A	1 3/2004	Schumacher et al.
2004/0097414 A	1 5/2004	Itoh et al.
2006/0160181 A	1 7/2006	Luethy et al.
2006/0281679 A	1 12/2006	Itoh et al.
2010/0323954 A	1 12/2010	Li et al.
2011/0104152 A		Sonoda
2011/0171218 A	1 7/2011	Seehra et al.
2011/0190207 A	8/2011	Mohammadi et al.
2012/0288886 A	1 11/2012	Mohammadi et al.
2013/0331325 A	1 12/2013	Mohammadi et al.

FOREIGN PATENT DOCUMENTS

WO	01/66595 A2	9/2001
WO	01/66596 A2	9/2001
WO	2009/133905 A1	11/2009
WO	2013/027191 A1	2/2013

OTHER PUBLICATIONS

Perwad et al. Am. J. Physiol. Renal Physiol. 293(5): F1577-83, 2007 (Epub Aug. 15, 2007).*

Japanese Patent Application No. 2008-117661, filed Apr. 2008.

Aono et al., "Therapeutic Effects of Anti-FGF23 Antibodies in Hypophosphatemic Rickets/Osteomalacia," J. Bone Miner. Res. 24(11):1879-1888 (available online May 4, 2009).

Aono et al., "The Neutralization of FGF-23 Ameliorates Hypophosphatemia and Rickets in Hyp Mice," Abstract, Oral Presentation, No. 1056, 25th American Society for Bone and Mineral Research Meeting, Sep. 19-23, 2003, Minneapolis, Minnesota, J. Bone Miner. Res. 18 (Suppl. S1): S15 (2003).

Shimada et al., "Mutant FGF-23 Responsible for Autosomal Dominant Hypophosphatemic Rickets Is Resistant to Proteolytic Cleavage and Causes Hypophosphatemia in Vivo," Endocrinology 143(8):3179-82 (2002).

Shimada et al., "Neutralization of Intrinsic FGF-23 Action by Antibodies Reveals the Essential Role of FGF-23 in Physiological Phosphate and Vitamin D Metabolism," Abstract, Poster Presentation, Nos. SA414 and F414, 25th American Society for Bone and Mineral Research Meeting, Sep. 19-23, 2003, Minneapolis, Minnesota, J. Bone Miner. Res. 18 (Suppl. S1): S93, S164 (2003).

Wu et al., "C-terminal Tail of FGF19 Determines its Specificity Towards Klotho Co-receptors," J.Biol Chem. 283 (48):33304-33309 (2008)

Yamazaki et al., "Anti-FGF23 Neutralizing Antibodies Show the Physiological Role and Structural Features of FGF23," J. Bone Miner. Res. 23(9):1509-1518 (available online Apr. 1, 2008).

Berndt et al., "Biological Activity of FGF-23 Fragments," Eur J Physiol 454:615-623 (2007).

(Continued)

Primary Examiner — Christine J Saoud (74) Attorney, Agent, or Firm — LeCla

(74) Attorney, Agent, or Firm — LeClairRyan, a Professional Corporation

(57) ABSTRACT

The present invention is directed to a pharmaceuticalm composition comprising a peptide comprising at least a portion corresponding to the C-terminus of FGF23 and an additive selected from the group consisting of vitamin D and a vitamin D receptor agonist.

6 Claims, 22 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Goetz et al., "Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members," Molecular and Cellular Biology 27(9):3417-3428 (2007). Goetz et al., "Isolated C-Terminal tail of FGF23 Alleviates Hypophosphatemia by Inhibiting FGF23-FGFR-Klotho Complex Formation," PNAS 107(1):407-412 (2010).

Hu et al., "C-terminal Fragments of Fibroblast Growth Factor (FGF) 23 Inhibits Renal Phosphate (Pi) Excretion as an FGF23 Antagonist by Displacing FGF23 from its Receptor," Abstract SA-FC345, J. Am. Soc. Nephrol. 19:78A (2008).

Hu et al., "C-terminal Fragments of Fibroblast Growth Factor (FGF) 23 Inhibit Renal Phosphate Excretion as an FGF23 Antagonist by Displacing FGF23 from its Receptor," Oral Presentation at the 41st Annual Meeting of the American Society of Nephrology (Renal Week 2008) Philadelphia, PA, Nov. 4-9 2008.

Shimada, "Possible Roles of Fibroblast Growth Factor 23 in Developing X-Linked Hypophosphatemia," Clin. Pediatr. Endocrinol. 14(Suppl. 23):33-37 (2005).

Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J. Biol. Chem. 281(10):6120-6123 (2006).

Kurosu et al., "Tissue-Specific Expression of Betaklotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21," J. Biol. Chem. 282(37):26687-26695 (2007).

Micanovic et al., "Different Roles of N- and C-Termini in the Functional Activity of FGF21," J. Cell. Physiol. 219:227-234 (2009).

Kharitonenkov et al., "FGF-21/FGF-21 Receptor Interaction and Activation is Determined by BetaKlotho," J. Cell. Physiol. 215:1-7 (2008).

Beenken et al., "The FGF Family: Biology, Pathophysiology and Therapy," Nat Rev Drug Discov. 8(3):235-53 (Mar. 2009).

Razzaque, "The FGF23-Klotho Axis: Endocrine Regulation of Phosphate Homeostasis," Nat. Rev. Endocrinol. 5 (11):611-19 (Nov. 2009).

Wu et al., "Separating Mitogenic and Metabolic Activities of Fibroblast Growth Factor 19 (FGF19)," Proc. Nat'l. Acad. Sci. USA 107(32):14158-14163 (Epub Jul. 26, 2010).

Faul et al., "FGF23 Induces Left Ventricular Hypertrophy," J Clin Invest 121(11):4393-4408 (2011).

Fliser et al., "Fibroblast Growth Factor 23 (FGF23) Predicts Progression of Chronic Kidney Disease: The Mild to Moderate Kidney Disease (MMKD) Study," J Am Soc Nephrol 18(9):2600-2608 (2007).

Gutierrez et al., "Fibroblast Growth Factor-23 Mitigates Hyperphosphatemia but Accentuates Calcitriol Deficiency in Chronic Kidney Disease," J Am Soc Nephrol 16(7):2205-2215 (2005).

Gutierrez et al., "Fibroblast Growth Factor 23 and Mortality Among Patients Undergoing Hemodialysis," N Engl J Med 359(6):584-592 (2008).

Gutierrez O et al., "Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease," Circulation 119(19):2545-2552 (2009).

Hasegawa et al., "Direct Evidence for a Causative Role of FGF23 in the Abnormal Renal Phosphate Handling and Vitamin D Metabolism in Rats with Early-Stage Chronic Kidney Disease," Kidney International 78:975-980 (2010).

Hsu HJ and Wu MS, "Fibroblast Growth Factor 23: A Possible Cause of Left Ventricular Hypertrophy in Hemodialysis Patients," Am J Med Sci 337(2):116-122 (2009).

Jean et al., "High Levels of Serum Fibroblast Growth Factor (FGF)-23 are Associated with Increased Mortality in Long Haemodialysis Patients," Nephrol Dial Transplant 24(9):2792-2796 (2009).

Larsson et al., "Circulating Concentration of FGF-23 Increases as Renal Function Declines in Patients with Chronic Kidney Disease, but Does Not Change in Response to Variation in Phosphate Intake in Healthy Volunteers," Kidney Int 64(6):2272-2279 (2003).

Mirza et al., "Circulating Fibroblast Growth Factor-23 is Associated with Vascular Dysfunction in the Community," Atherosclerosis 205(2):385-390 (2009).

Mirza et al., "Serum Intact FGF23 Associate with Left Ventricular Mass, Hypertrophy and Geometry in an Elderly Population," Atherosclerosis 207(2):546-551 (2009).

Mirza et al., "Circulating Fibroblast Growth Factor-23 Is Associated with Fat Mass and Dyslipidemia in Two Independent Cohorts of Elderly Individuals," Arterioscler. Thromb. Vasc. Biol. 31:219-227 (2011).

Nakanishi et al., "Serum Fibroblast Growth Factor-23 Levels Predict the Future Refractory Hyperparathyroidism in Dialysis Patients," Kidney Int 67(3):1171-1178 (2005).

Nasrallah et al., "Fibroblast Growth Factor-23 (FGF-23) Is Independently Correlated to Aortic Calcification in Haemodialysis Patients," Nephrol Dial Transplant 25(8):2679-2685 (2010).

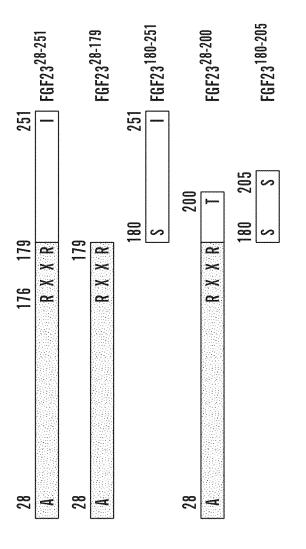
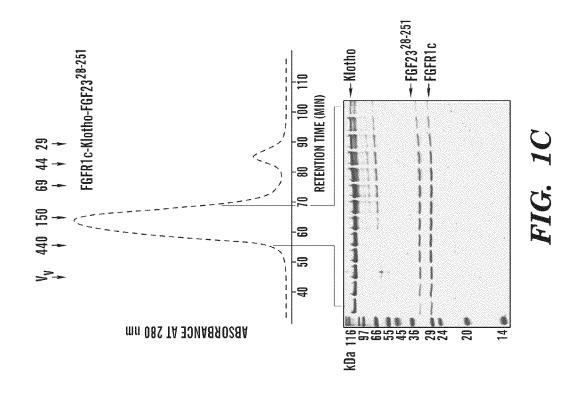
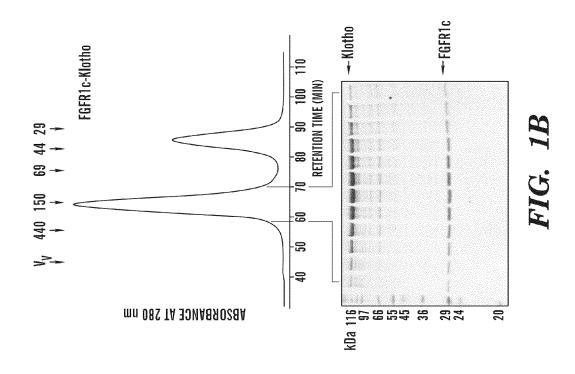
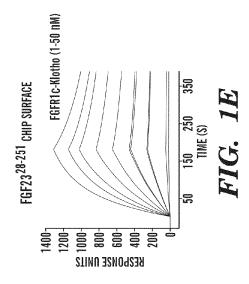
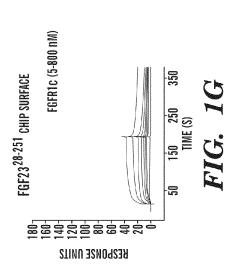
Shigematsu et al., "Possible Involvement of Circulating Fibroblast Growth Factor 23 in the Development of Secondary Hyperparathyroidism Associated with Renal Insufficiency," Am J Kidney Dis 44(2):250-256 (2004).

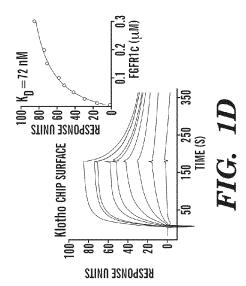
Westerberg et al., "Regulation of Fibroblast Growth Factor-23 in Chronic Kidney Disease," Nephrol Dial Transplant 22 (11):3202-3207 (2007).

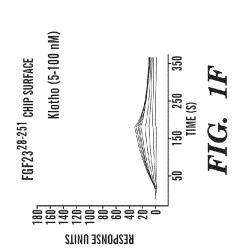
International Search Report and Written Opinion for PCT/US2015/023349 (Jul. 16, 2015).

Nallamsetty et al., "Gateway Vectors for the Production of Combinatorially-Tagged His6-MBP Fusion Proteins in the Cytoplasm and Periplasm of Escherichia coli," Protein Sci. 14:2964-2971 (2005).

^{*} cited by examiner


FIG. 1A



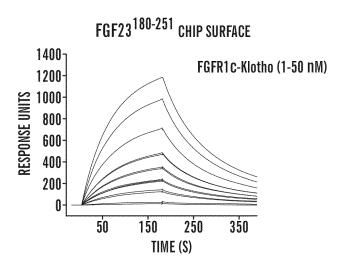
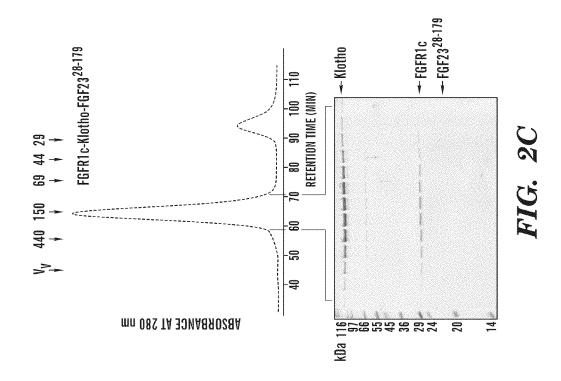
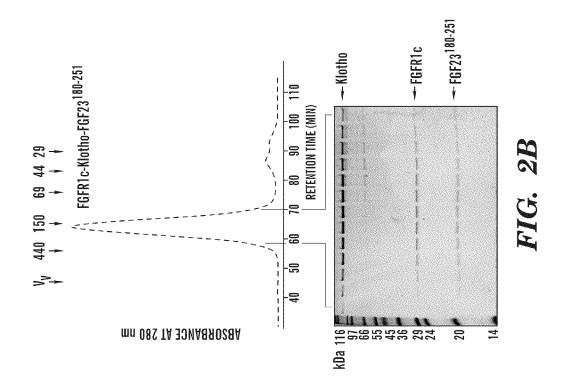
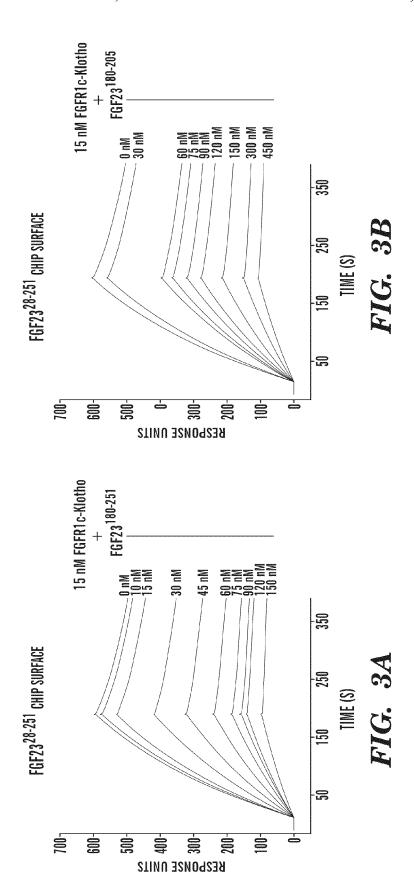
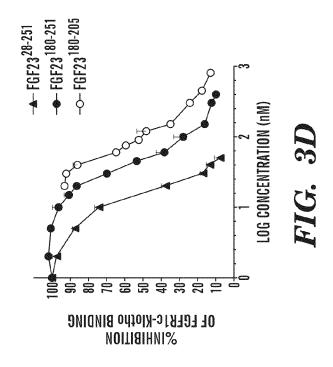
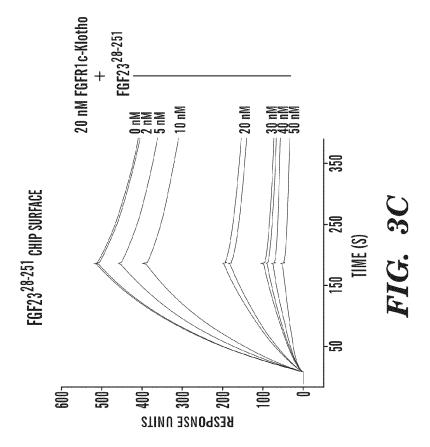
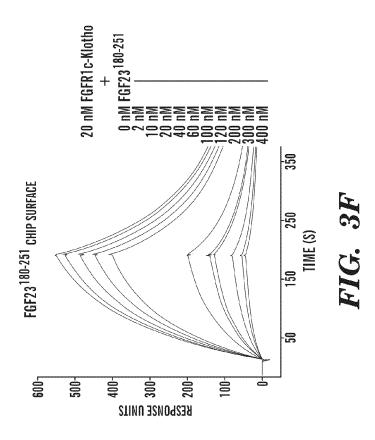
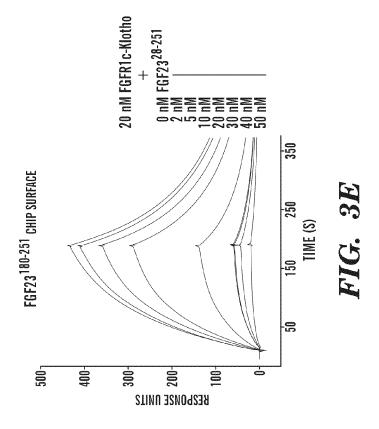
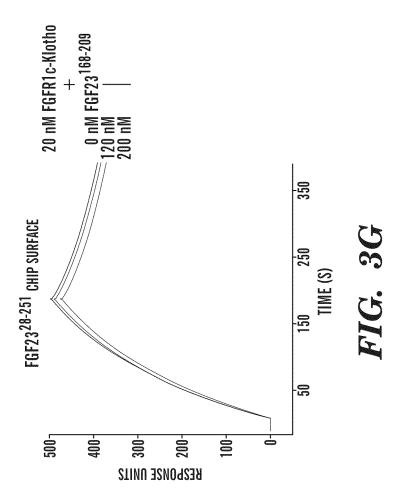



FIG. 2A


FIG. 2D



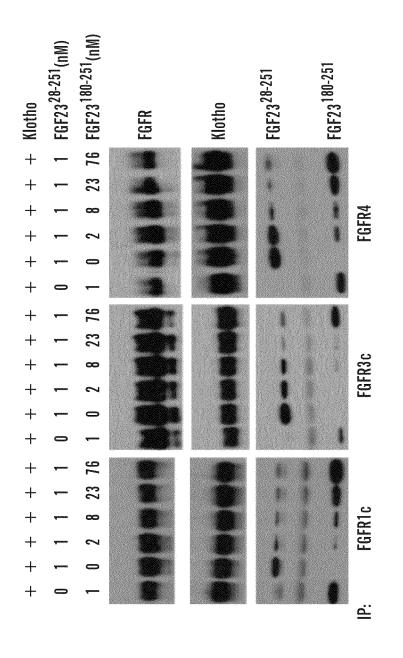
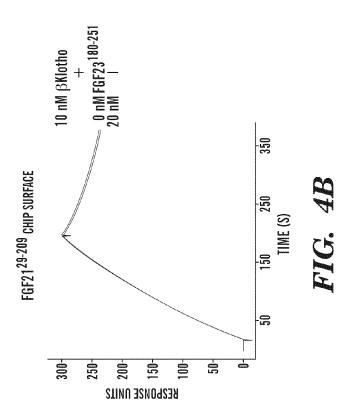
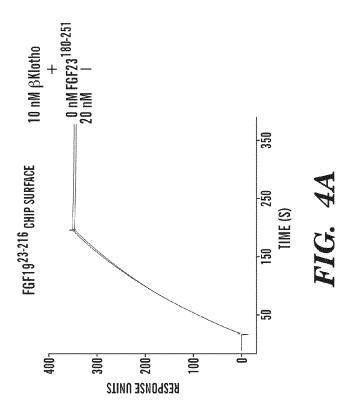
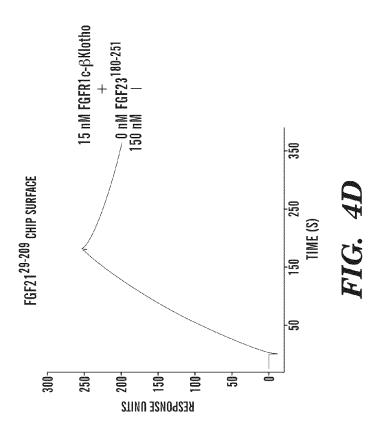
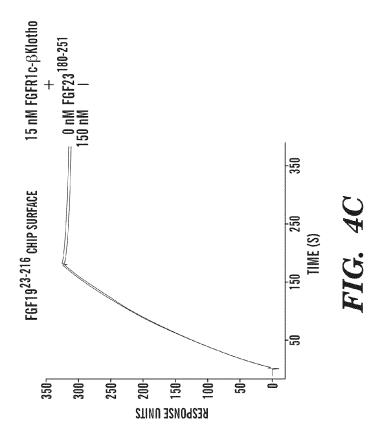






FIG. 3H

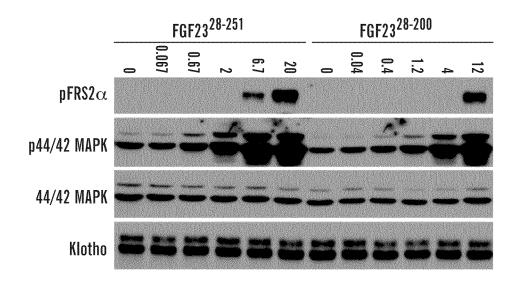


FIG. 5A

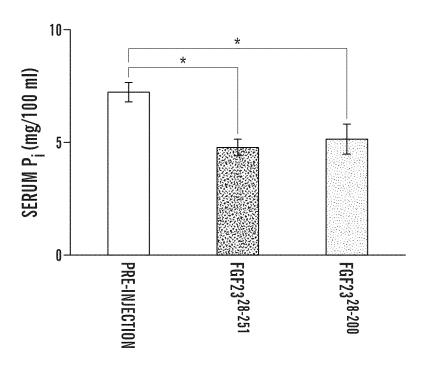


FIG. 5B

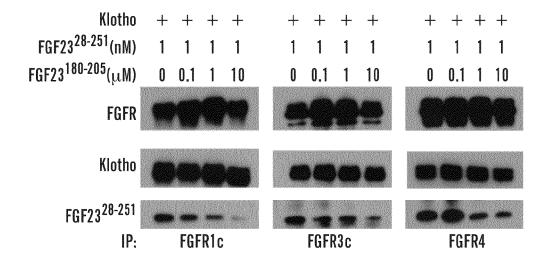


FIG. 5C

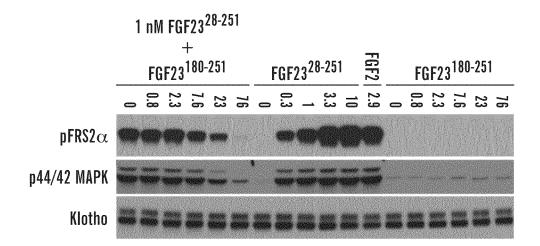


FIG. 6A

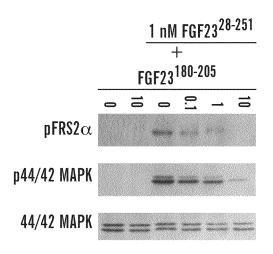


FIG. 6B

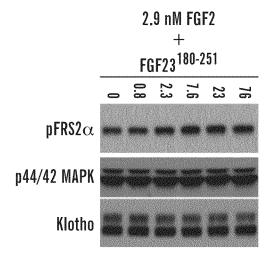


FIG. 6C

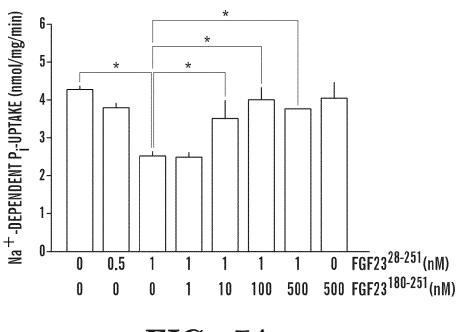
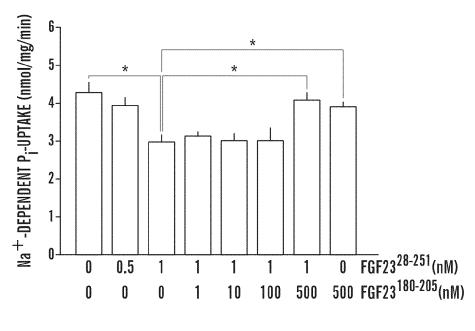
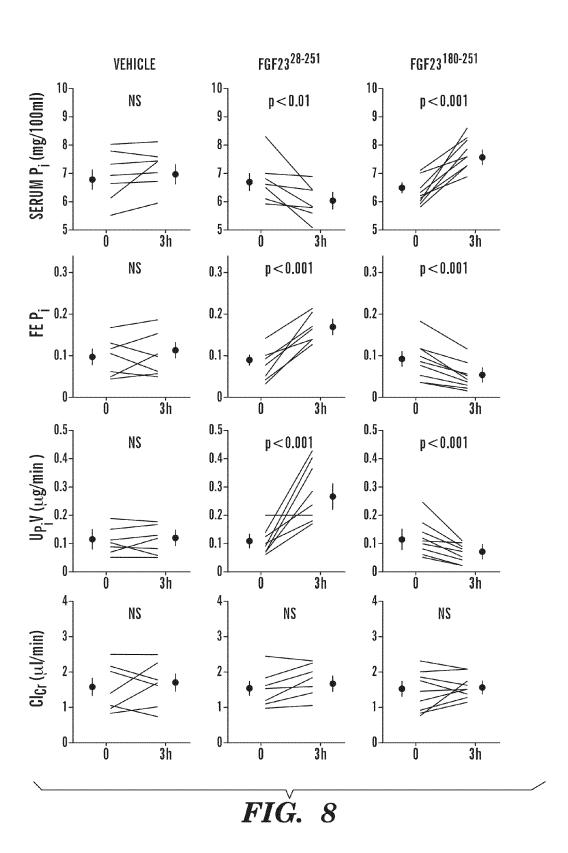




FIG. 7A

FIG. 7B

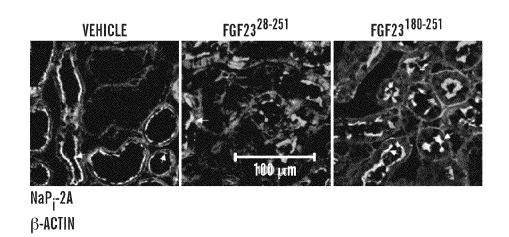
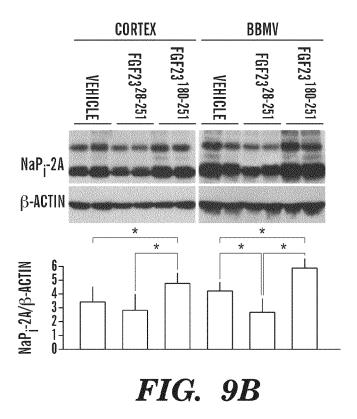
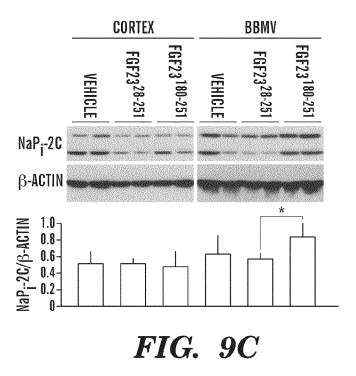




FIG. 9A

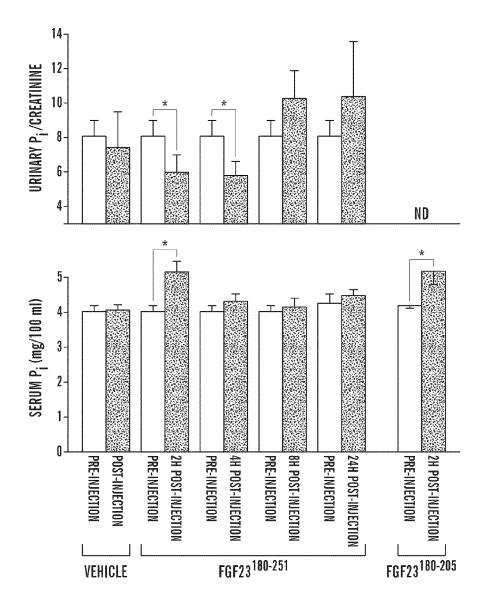


FIG. 10

PHARMACEUTICAL COMPOSITIONS INCLUDING A PORTION OF THE C-TERMINUS OF FGF23

This application is a continuation of U.S. patent application Ser. No. 12/915,801, filed Oct. 29, 2010, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/256,361, filed Oct. 30, 2009, each of which is hereby incorporated by reference in its entirety.

The subject matter of this application was made with support from the United States Government under National Institutes of Health (NIH) grant numbers DE13686, AG19712, AG25326, DK48482, DK20543, and DK077276. The U.S. government has certain rights.

FIELD OF THE INVENTION

The present invention is directed to inhibiting binding of FGF23 to the binary FGFR-Klotho complex for the treatment $_{20}$ of hypophosphatemia.

BACKGROUND OF THE INVENTION

Inorganic phosphate plays a key role in a myriad of biological processes, including bone mineralization, reversible regulation of protein function by phosphorylation, and production of adenosine triphosphate. Plasma levels of phosphate range between 2.2 and 4.9 mg/dl (Dwyer et al., "Severe Hypophosphatemia in Postoperative Patients," *Nutr Clin* 30 *Pract* 7(6):279-283 (1992), Alon et al., "Calcimimetics as an Adjuvant Treatment for Familial Hypophosphatemic Rickets," *Clin J Am Soc Nephrol* 3: 658-664 (2008)), and are primarily regulated by modifying renal tubular reabsorption. Because of phosphate's pleiotropic activity, imbalances in 35 phosphate homeostasis adversely affect essentially every major tissue/organ.

Hypophosphatemia is a common clinical condition with an incidence ranging from 0.2-3.1% in all hospital admissions to 21.5-80% in specific subgroups of hospitalized patients 40 (Gaasbeek et al., "Hypophosphatemia: An Update on its Etiology and Treatment," Am J Med 118(10):1094-1101 (2005), Brunelli et al., "Hypophosphatemia: Clinical Consequences and Management.," J Am Soc Nephrol 18(7):1999-2003 (2007)). Acute clinical manifestations of hypophosphatemia 45 include respiratory failure, cardiac arrhythmia, hemolysis, rhabdomyolysis, seizures, and coma. Chronic clinical manifestations of hypophosphatemia include myalgia and osteomalacia (Gaasbeek et al., "Hypophosphatemia: An Update on its Etiology and Treatment," Am J Med 118(10):1094-1101 50 (2005)). Hypophosphatemia originates from diverse pathophysiologic mechanisms, most importantly from renal phosphate wasting, an inherited or acquired condition in which renal tubular reabsorption of phosphate is impaired (Imel et al., "Fibroblast Growth Factor 23: Roles in Health and Dis- 55 ease," J Am Soc Nephrol 16(9):2565-2575 (2005); Negri A., "Hereditary Hypophosphatemias: New Genes in the Bonekidney Axis," Nephrology (Carlton) 12(4):317-320 (2007)). Hypophosphatemia can also be associated with alcoholic and diabetic ketoacidosis, acute asthma, chronic obstructive pul- 60 monary disease, sepsis, recovery from organ transplantation, and the "refeeding syndrome", which refers to metabolic disturbances seen in malnourished patients on commencing nutrition (Gaasbeek et al., "Hypophosphatemia: An Update on its Etiology and Treatment," Am J Med 118(10):1094-1101 (2005), Miller et al., "Hypophosphatemia in the Emergency Department Therapeutics," Am J Emerg Med 18(4):

2

457-461 (2000), Marinella M A., "Refeeding Syndrome and Hypophosphatemia," *J Intensive Care Med* 20(3):155-159 (2005)).

Oral or intravenous administration of inorganic phosphate salts is the current mainstay for the management of hypophosphatemia. Oral phosphate therapy requires high doses, which frequently lead to diarrhea or gastric irritation (Shiber et al., "Serum Phosphate Abnormalities in the Emergency Department," JEmerg Med 23(4):395-400 (2002)). For intravenous phosphate therapy, the response to any given dose is sometimes unpredictable (Bohannon N J., "Large Phosphate Shifts with Treatment for Hyperglycemia," Arch Intern Med 149(6):1423-1425 (1989), Charron et al., "Intravenous Phosphate in the Intensive Care Unit: More Aggressive Repletion Regimens for Moderate and Severe Hypophosphatemia," Intensive Care Med 29(8):1273-1278 (2003); Rosen et al., "Intravenous Phosphate Repletion Regimen for Critically Ill patients with Moderate Hypophosphatemia," Crit Care Med 23(7):1204-1210 (1995)), and complications include "overshoot" hyperphosphatemia, hypocalcemia, and metastatic calcification (Gaasbeek et al., "Hypophosphatemia: An Update on its Etiology and Treatment," Am J Med 118(10): 1094-1101 (2005); Shiber et al., "Serum Phosphate Abnormalities in the Emergency Department," *J Emerg Med* 23(4): 395-400 (2002)). In addition, parenteral regimens are not practical for chronic disorders. Most importantly, replacement therapy alone is never adequate when there is significant renal phosphate wasting. Therefore, novel strategies for the treatment of hypophosphatemia are needed.

Kidney transplantation is the preferred treatment of endstage renal failure, and hypophosphatemia is a well recognized problem during the first weeks after engraftment. The majority of kidney transplant patients often experience excessive renal phosphate leakage (Schwarz et al., "Impaired Phosphate Handling of Renal Allografts is Aggravated under Rapamycin-based Immunosuppression," Nephrol Dial Transplant 16: 378-382 (2001); Moorhead et al., "Hypophosphataemic Osteomalacia after Cadaveric Renal Transplantation," Lancet 1(7860):694-697 (1974)), because the transplanted kidneys only marginally reabsorb the urinary phosphate to the circulation. The reasons for this poor reabsorbing activity on the part of transplanted kidneys are unknown. It frequently causes the patients malnutrition and secondary osteoporosis. This problem cannot be treated by a simple exogenous supplementation of phosphate. Similar renal phosphate leakage with unknown pathology is often observed in pediatric medicine, with outcomes such as malnutrition or growth retardation.

A recent study in adults demonstrated that as many as 93% of patients develop moderate to severe hypophosphatemia (serum phosphate concentration 0.9-2.25 mg/dl), an average of 5 weeks following transplantation (Ambuhl et al., "Metabolic Aspects of Phosphate Replacement Therapy for Hypophosphatemia After Renal Transplantation Impact on Muscular Phosphate Content, Mineral Metabolism, and Acid/base Homeostasis," *Am J Kidney Dis* 34:875-83 (1999)).

Health problems associated with circulating phosphate shortage are not limited to humans. Dairy cows sometimes suffer from hypophosphatemia (too low phosphate in the blood) caused by overproduction of the milk. It not only deteriorates the nutritional quality of the milk but also often make the cows useless for milk production. It is a relatively common problem in dairy farms (Goff, J P., "Pathophysiology of Calcium and Phosphorus Disorders," *Vet Clin North Am Food Anim Pract* 16(2):319-37 (2000), Oetzel, G R.,

"Management of Dry Cows for the Prevention of Milk Fever and Other Mineral Disorders," *Vet Clin North Am Food Anim Pract* 16(2):369-86 (2000)).

Fibroblast growth factor (FGF) 23, is an endocrine regulator of phosphate homeostasis, and was originally identified as the mutated gene in patients with the phosphate wasting disorder "autosomal dominant hypophosphatemic rickets" (ADHR) (Anonymous., "Autosomal Dominant Hypophosphataemic Rickets is Associated with Mutations in FGF23, Nat Genet 26(3):345-348 (2000)). FGF23 inhibits reabsorption of phosphate in the renal proximal tubule by decreasing the abundance of the type II sodium-dependent phosphate transporters NaP_i-2A and NaP_i-2C in the apical brush border membrane (Baum et al., "Effect of Fibroblast Growth Factor-23 on Phosphate Transport in Proximal Tubules," Kidney Int 68(3):1148-1153 (2005); Perwad et al., "Fibroblast Growth Factor 23 Impairs Phosphorus and Vitamin D Metabolism In Vivo and Suppresses 25-hydroxyvitamin D-1alpha-hydroxylase Expression In Vitro," *Am J Physiol Renal Physiol* 293 (5):F1577-1583 (2007); Larsson et al., "Transgenic mice expressing fibroblast growth factor 23 under the control of the 20 alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis," Endocrinology 145(7):3087-3094 (2004)). The phosphaturic activity of FGF23 is down-regulated by proteolytic cleavage at the ¹⁷⁶RXXR¹⁷⁹ (SEQ ID NO: 1) motif, where "XX" is defined as "HT", corresponding to positions 177 and 178, respectively, of the FGF23 amino acid sequence, producing an inactive N-terminal fragment (Y25 to R179) and a C-terminal fragment (S180 to I251) (FIG. 1A) (Goetz et al., "Molecular Insights into the Klotho-dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members," Mol Cell Biol 27(9):3417-3428 (2007)). FGF receptor (FGFR) 1 is the principal mediator of the phosphaturic action of FGF23 (Liu et al., "FGFR3 and FGFR4 do not Mediate Renal Effects of FGF23," *J Am Soc Nephrol* 19(12): 2342-2350 (2008); Gattineni et al., "FGF23 Decreases Renal 35 NaPi-2a and NaPi-2c Expression and Induces Hypophosphatemia in vivo Predominantly via FGF Receptor 1," Am J Physiol 297(2):F282-F291 (2009)). In addition, Klotho, a protein first described as an aging suppressor (Kuro-o et al., "Mutation of the Mouse Klotho Gene Leads to a Syndrome 40 Resembling Aging," Nature 390(6655):45-51 (1997)), is required as a coreceptor by FGF23 in its target tissue in order to exert its phosphaturic activity (Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J Biol Chem 281(10):6120-6123 (2006); Urakawa et al., "Klotho Converts Canonical FGF Receptor into a Specific Receptor for FGF23," Nature 444(7120):770-774 (2006)). Klotho constitutively binds the cognate FGFRs of FGF23, and the binary FGFR-Klotho complexes exhibit enhanced binding affinity for FGF23 ((Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," *J Biol Chem* 281(10):6120-6123 (2006); Urakawa et al., "Klotho Converts Canonical FGF Receptor into a Specific Receptor for FGF23," Nature 444(7120):770-774 (2006)). In co-immunoprecipitation studies, it was demonstrated that the mature, full-length form of FGF23 (Y25 to I251) but not the inactive N-terminal frag- 55 ment of proteolytic cleavage (Y25 to R179) binds to binary FGFR-Klotho complexes (Goetz et al., "Molecular Insights into the Klotho-dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members," Mol Cell Biol 27(9):3417-3428 (2007)).

The present invention is directed to overcoming the deficiencies in the art.

SUMMARY OF THE INVENTION

A first aspect of the present invention relates to a method of treating hypophosphatemia in a subject. This method

4

involves selecting a subject with hypophosphatemia associated with elevated or normal FGF23 levels, and administering to the selected subject an inhibitor of FGF23-Klotho-FGF receptor complex formation under conditions effective to treat the hypophosphatemia.

A second aspect of the present invention relates to a method of screening for compounds suitable for treatment of hypophosphatemia associated with elevated or normal FGF23 levels. This method involves providing: FGF23, binary FGFR-Klotho complex, and one or more candidate compounds. The FGF23, the FGFR-Klotho complex, and the candidate compounds are combined under conditions effective for the FGF23 and the binary FGFR-Klotho complex to form a ternary complex if present by themselves. The candidate compounds, which prevent formation of the complex, are identipotentially suitable in treating as being hypophosphatemia associated with elevated or normal FGF23 levels.

The present invention also relates to a method of screening the specificity of compounds which prevent formation of the FGF23-Klotho-FGFR complex. This method involves providing FGF19, providing binary FGFR-βKlotho complex, and providing one or more candidate compounds. The FGF19, the binary FGFR-βKlotho complex, and the candidate compounds are combined under conditions effective for the FGF19 and the binary FGFR-βKlotho complex to form a ternary complex if present by themselves. Candidate compounds which do not interfere with formation of the complex are identified as being specific and potentially suitable in treating hypophosphatemia associated with elevated or normal FGF23 levels.

Fibroblast growth factor (FGF) 23 is a key hormone and regulator of phosphate homeostasis, which inhibits renal phosphate reabsorption by activating FGF receptor (FGFR) 1c in a Klotho-dependent fashion. The present invention shows that proteolytic cleavage at the RXXR motif downregulates FGF23's activity by a dual mechanism: by removing the binding site for the binary FGFR-Klotho complex that resides in the C-terminal region of FGF23, and by generating an endogenous FGF23 inhibitor. The soluble ectodomains of FGFR1c and Klotho are sufficient to form a ternary complex with FGF23 in vitro. The C-terminal tail of FGF23 mediates binding of FGF23 to a de novo site generated at the composite FGFR1c-Klotho interface. Consistent with this finding, the isolated 72-residue-long C-terminal tail of FGF23—the C-terminal fragment of proteolytic cleavage at the RXXR motif—impairs FGF23 signaling by competing with fulllength ligand for binding to the binary FGFR-Klotho complex. Injection of the FGF23 C-terminal tail peptide into healthy rats inhibits renal phosphate excretion and induces hyperphosphatemia. In a mouse model of renal phosphate wasting attributable to high FGF23, the FGF23 C-terminal tail peptide reduces phosphate excretion leading to an increase in serum phosphate concentration. It is proposed that the proteolytic C-terminal fragment of FGF23 is an endogenous inhibitor of FGF23 and that peptides derived from the C-terminal tail of FGF23, or peptidomimetics and small molecule organomimetics of the C-terminal tail can be used as novel therapeutics to treat hypophosphatemia where FGF23 60 is not down-regulated as a compensatory mechanism.

Applicants have determined that the 72-amino acid C-terminal tail of FGF23 mediates binding of FGF23 to the binary FGFR-Klotho complex and, indeed, this region harbors the FGF23-binding site for the binary FGFR-Klotho complex. Based on this finding, the ability of the C-terminal region of FGF23 to antagonize FGF23 binding to FGFR-Klotho and its phosphaturic action is evaluated. It is shown that peptides

derived from this region are able to competitively displace full-length FGF23 from its ternary complex with Klotho and FGFR, and inhibit FGF23 signaling. It is further shown that these peptides are able to antagonize FGF23's phosphaturic activity in vivo, both in healthy rats and in a mouse model of 5 phosphate wasting disorders. Based on these data, it is believed that peptides derived from the C-terminal tail of FGF23, or peptidomimetics and small molecule organomimetics of the C-terminal tail can be used as novel therapeutics to treat patients with hypophosphatemia where FGF23 is not 10 down-regulated as a compensatory mechanism.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-G show that FGF23 binds to the preformed 15 binary complex of the ectodomains of FGFR and Klotho. FIG. 1A shows the FGF23 proteins and peptides used in this study. Amino acid boundaries of each protein/peptide are labeled with residue letter and number. The FGF23 core region is shaded grey, and the position of the proteolytic 20 cleavage site RXXR (SEQ ID NO: 1) is indicated, where "XX" is defined as "HT", corresponding to positions 177 and 178 of SEQ ID NO: 3, respectively, of the FGF23 amino acid sequence. FIG. 1B shows a size-exclusion chromatogram of the 1:1 FGFR1c-Klotho complex. Arrows indicate the reten- 25 tion times of molecular size standards and the void volume (V_V). Proteins of column peak fractions were resolved on 14% SDS-polyacrylamide gels and stained with Coomassie Blue. FIG. 1C shows a size-exclusion chromatogram of the ternary FGF23²⁸⁻²⁵¹-FGFR1c-Klotho complex. Arrows indi- 30 cate the retention times of molecular size standards and the void volume (V_V). Proteins of column peak fractions were resolved on 14% SDS-polyacrylamide gels and stained with Coomassie Blue. FIG. 1D shows a representative surface plasmon resonance (SPR) sensorgram of FGFR1c binding to 35 Klotho, and fitted saturation binding curve. Klotho ectodomain was immobilized on a biosensor chip, and increasing concentrations of FGFR1c ectodomain were passed over the chip. The dissociation constant (K_D) was calculated from the saturation binding curve. FIG. 1E shows 40 a representative SPR sensorgram illustrating binding of FGF23²⁸⁻²⁵¹ to the binary FGFR1c-Klotho complex. FGF23²⁸⁻²⁵¹ was immobilized on a biosensor chip, and increasing concentrations of FGFR1c-Klotho complex were passed over the chip. FIG. 1F shows a representative SPR 45 sensorgram of FGF23 binding to Klotho alone. FGF23²⁸⁻²⁵¹ was immobilized on a biosensor chip, and increasing concentrations of Klotho ectodomain were passed over the chip. FIG. 1G shows a representative SPR sensorgram of FGF23 binding to FGFR1c alone. FGF23²⁸⁻²⁵¹ was immobilized on 50 a biosensor chip, and increasing concentrations of FGFR1c ectodomain were passed over the chip.

FIGS. 2A-D show the FGF23 C-terminal tail mediates binding of FGF23 to the binary FGFR-Klotho complex. FIG. 2A shows a representative SPR sensorgram illustrating binding of FGF23¹⁸⁰⁻²⁵¹ to the binary FGFR1c-Klotho complex. FGF23¹⁸⁰⁻²⁵¹ was immobilized on a biosensor chip, and increasing concentrations of FGFR1c-Klotho complex were passed over the chip. FIG. 2B shows a size-exclusion chromatogram of the mixture of the 1:1 FGFR1c-Klotho complex with FGF23¹⁸⁰⁻²⁵¹. Arrows indicate the retention times of molecular size standards and the void volume (V_{ν}). Proteins of column peak fractions were resolved on 14% SDS-polyacrylamide gels and stained with Coomassie Blue. FIG. 2C shows a size-exclusion chromatogram of the mixture of the 65 1:1 FGFR1c-Klotho complex with FGF23²⁸⁻¹⁷⁹. Arrows indicate the retention times of molecular size standards and

6

the void volume (V_{ν}). Proteins of column peak fractions were resolved on 14% SDS-polyacrylamide gels and stained with Coomassie Blue. FIG. 2D shows analysis of FGF23 protein/peptide binding to FGFR-Klotho complex by pull-down assay. Lysate of HEK293 cells stably expressing Klotho was incubated with FGF23 proteins, or protein sample buffer (control). Binary complexes of endogenous FGFR and Klotho were isolated from cell lysate by immunoprecipitation (IP) and analyzed for bound FGF23 protein/peptide.

FIGS. 3A-H show that the isolated FGF23 C-terminal tail peptide competes with FGF23 for binding to the binary FGFR-Klotho complex. FIG. 3A shows a representative SPR sensorgram illustrating inhibition by FGF23¹⁸⁰⁻²⁵¹ of FGFR1c-Klotho binding to FGF23²⁸⁻²⁵¹ immobilized on a biosensor chip. Increasing concentrations of FGF23¹⁸⁰⁻²⁵¹ were mixed with a fixed concentration of FGFR1c-Klotho complex and the mixtures were passed over a FGF23 chip. FIG. 3B shows a representative SPR sensorgram illustrating inhibition by FGF23¹⁸⁰⁻²⁰⁵ of FGFR1c-Klotho binding to FGF23²⁸⁻²⁵¹ immobilized on a biosensor chip. Increasing concentrations of FGF23¹⁸⁰⁻²⁰⁵ were mixed with a fixed concentration of FGFR1c-Klotho complex and the mixtures were passed over a FGF23 chip. The sequences of FGF23¹⁸⁰⁻²⁵¹, FGF23 $^{180-205}$, and FGF23 $^{28-251}$ are listed in Table 1. FIG. 3C shows a representative SPR sensorgram illustrating inhibition by FGF23²⁸⁻²⁵¹ of FGFR1c-Klotho binding to FGF23²⁸⁻²⁵¹ immobilized on a biosensor chip. Increasing concentrations of FGF23²⁸⁻²⁵¹ were mixed with a fixed concentration of FGFR1c-Klotho complex and the mixtures were passed over a FGF23 chip. FIG. 3D shows dose-response curves for inhibition by FGF23¹⁸⁰⁻²⁵¹ (filled circles), FGF23¹⁸⁰⁻²⁰⁵ (open circles), or FGF23²⁸⁻²⁵¹ (filled triangles) of FGFR1c-Klotho binding to FGF23 immobilized on a biosensor chip (see also SPR sensorgrams shown in FIGS. 3A-C). For each doseresponse curve, averaged data from two to three SPR experiments are presented. Inhibition of binding by the FGF23 C-terminal peptides and full-length FGF23, respectively, is expressed as percent of the binding response obtained for the binary FGFR1c-Klotho complex alone, and plotted as a function of the concentration of FGF23 protein/peptide. Note that the dose-response curves of the C-terminal FGF23 peptides are shifted to the right by about 3-fold and 6-fold, respectively, compared to the dose-response curve of full-length FGF23. Error bars denote SD. FIG. 3E shows a representative SPR sensorgram illustrating inhibition by FGF23²⁸⁻²⁵¹ of FGFR1c-Klotho binding to FGF23 immobilized on a biosensor chip. Increasing concentrations of FGF23²⁸⁻²⁵¹ were mixed with a fixed concentration of FGFR1c-Klotho complex and the mixtures were passed over a FGF23¹⁸⁰⁻²⁵¹ chip. FIG. 3F shows a representative SPR sensorgram illustrating inhibition by FGF23¹⁸⁰⁻²⁵¹ of FGFR1c-Klotho binding to FGF23¹⁸⁰⁻²⁵¹ immobilized on a biosensor chip. Increasing concentrations of FGF23¹⁸⁰⁻²⁵¹ were mixed with a fixed con $centration \, of FGFR1c\text{-}Klotho \, complex \, and \, the \, mixtures \, were \,$ passed over a FGF23¹⁸⁰⁻²⁵¹ chip. FIG. 3G shows a representative SPR sensorgram illustrating no inhibition by FGF21¹⁶⁸⁻²⁰⁹ of FGFR1c-Klotho binding to FGF23²⁸⁻²⁵¹ immobilized on a biosensor chip. FGF21168-209 and FGFR1c-Klotho complex were mixed at molar ratios of 6:1 and 10:1, and the mixtures were passed over a FGF23 chip. FIG. 3H shows inhibition by FGF23¹⁸⁰⁻²⁵¹ of FGFR-Klotho binding to FGF23²⁸⁻²⁵¹ using a co-immunoprecipitation based competition assay. Cognate FGFRs of FGF23 were co-immunoprecipitated with Klotho from lysates of a HEK293 cell line stably expressing Klotho (IP) Immunoprecipitated binary FGFR-Klotho complexes were incubated with either FGF23¹⁸⁰⁻²⁵¹ or FGF23²⁸⁻²⁵¹ alone, or with mixtures of

FGF23²⁸⁻²⁵¹ with increasing FGF23¹⁸⁰⁻²⁵¹, and subsequently analyzed for bound FGF23 protein(s). A 76-fold molar excess of FGF23¹⁸⁰⁻²⁵¹ completely blocked binding of FGF23²⁸⁻²⁵¹ to the FGFR-Klotho complex. Consistent with the data shown in FIGS. **2**A-D, FGF23¹⁸⁰⁻²⁵¹ alone co-precipitated with each of the three binary FGFR-Klotho complexes (first lane of each immunoblot). The sequences of FGF23¹⁸⁰⁻²⁵¹, FGF23¹⁸⁰⁻²⁰⁵, and FGF23²⁸⁻²⁵¹ are listed in Table 1.

FIGS. 4A-D show that the FGF23 C-terminal tail peptide does not interfere with binary complex formation between 10 βKlotho and FGF19/FGF21, nor does it interfere with ternary complex formation between BKlotho, FGFR, and FGF19/ FGF21. FIG. 4A shows a representative SPR sensorgram illustrating no inhibition by FGF23 $^{180\text{-}251}$ of β Klotho binding to FGF19²³⁻²¹⁶ immobilized on a biosensor chip. 15 FGF23 $^{180-251}$ and β Klotho were mixed at a molar ratio of 2:1, and the mixture was passed over a FGF19 chip. FIG. 4B shows a representative SPR sensorgram illustrating no inhibition by FGF23¹⁸⁰⁻²⁵¹ of βKlotho binding to FGF21²⁹⁻²⁰⁹ immobilized on a biosensor chip. FGF23¹⁸⁰⁻²⁵¹ and βKlotho 20 were mixed at a molar ratio of 2:1, and the mixture was passed over a FGF21 chip. FIG. 4C shows a representative SPR sensorgram illustrating no inhibition by FGF23 $^{180-251}$ of FGFR1c- β Klotho binding to FGF19 $^{23-216}$ immobilized on a biosensor chip. FGF23¹⁸⁰⁻²⁵¹ and FGFR1c-βKlotho complex 25 were mixed at a molar ratio of 10:1, and the mixture was passed over a FGF19 chip. FIG. 4D shows a representative SPR sensorgram illustrating no inhibition by FGF23¹⁸⁰⁻²⁵¹ of FGFR1c-βKlotho binding to FGF21²⁹⁻²⁰⁹ immobilized on a biosensor chip. FGF23¹⁸⁰⁻²⁵¹ and FGFR1c-βKlotho complex 30 were mixed at a molar ratio of 10:1, and the mixture was passed over a FGF21 chip.

FIGS. 5A-C show that residues S180 to T200 of the C-terminal tail of FGF23 comprise the minimal binding epitope for the FGFR-K^{lotho c}omplex. FIG. **5**A shows that FGF23²⁸⁻²⁰⁰ 35 induces tyrosine phosphorylation of FRS2α and downstream activation of MAP kinase cascade. Shown is an immunoblot analysis for phosphorylation of FRS2α (pFRS2α) and 44/42 MAP kinase (p44/42 MAPK) in a CHO Klotho cell line, which had been stimulated with either FGF23²⁸⁻²⁵¹ or $^{FGF2328-200}$. Numbers above the $1^{anes\ g}$ ive the amounts of protein added in nM. To control for equal sample loading, the protein blots were probed with antibodies to non-phosphorylated ^{44/42} MAP kinase (44/42 MAPK) and Klotho. FIG. **5**B shows that FGF23²⁸⁻²⁰⁰ exhibits phosphaturic activity. 45 FGF23²⁸⁻²⁵¹ and FGF23²⁸⁻²⁰⁰ were injected ^{IP into} C57BL/6 mice, and serum levels of phosphate (serum P_i) were measured before and after FGF23 protein injection. Bars and error bars denote mean±SE. An asterisk indicates P<0.05 by ANOVA. FIG. 5C shows that FGF23¹⁸⁰⁻²⁰⁵—the minimal binding 50 epitope for the FGFR-Klotho complex—competes with FGF23 for binding to FGFR-Klotho. Cognate FGFRs of FGF23 were co-immunoprecipitated with Klotho from lysates of a HEK293 cell line stably expressing Klotho (IP). Immunoprecipitated binary FGFR-Klotho complexes were 55 incubated with either FGF23²⁸⁻²⁵¹ alone or mixtures of FGF23²⁸⁻²⁵¹ with increasing FGF23¹⁸⁰⁻²⁰⁵, and subsequently analyzed for bound FGF23 protein(s). The FGF23 180-205 peptide inhibited co-precipitation of FGF23²⁸⁻²⁵¹ with each of the three binary FGFR-Klotho complexes in a dose-depen- 60 dent fashion, albeit with over 100-fold reduced potency compared to the FGF23¹⁸⁰⁻²⁵¹ peptide (FIG. **3**H). The sequences of FGF23¹⁸⁰⁻²⁵¹, FGF23¹⁸⁰⁻²⁰⁵, and FGF23²⁸⁻²⁵¹ are listed in Table 1.

FIGS. 6A-C show that FGF23 C-terminal peptides impair 65 ternary complex formation between FGF23, Klotho, and FGFR, and specifically block FGF23 signaling. FIG. 6A

8

shows that FGF23¹⁸⁰⁻²⁵¹ inhibits tyrosine phosphorylation of FRS2α and downstream activation of MAP kinase cascade induced by FGF23²⁸⁻²⁵¹. Shown is an immunoblot analysis for phosphorylation of FRS2α (pFRS2α) and 44/42 MAP kinase (p44/42 MAPK) in a HEK293 Klotho cell line, which had been stimulated with FGF proteins/peptide as denoted in the figure. Numbers above the lanes give the amounts of protein/peptide added in nM. To control for equal sample loading, the protein blots were probed with an antibody to Klotho. FIG. 6B shows that FGF23¹⁸⁰⁻²⁰⁵ inhibits tyrosine phosphorylation of FRS2α and downstream activation of MAP kinase cascade induced by FGF23²⁸⁻²⁵¹. Shown is an immunoblot analysis for phosphorylation of FRS2 α (pFRS2a) and 44/42 MAP kinase (p44/42 MAPK) in a HEK293 Klotho cell line, which had been stimulated with either FGF23¹⁸⁰⁻²⁰⁵ alone or mixtures of FGF23²⁸⁻²⁵¹ with increasing FGF23¹⁸⁰⁻²⁰⁵. Numbers above the lanes give the amounts of peptide added in µM. To control for equal sample loading, the protein blots were probed with an antibody to non-phosphorylated 44/42 MAP kinase (44/42 MAPK). FIG. 6C shows that FGF23¹⁸⁰⁻²⁵¹ fails to inhibit tyrosine phosphorylation of FRS2α and downstream activation of MAP kinase cascade induced by FGF2. Shown is an immunoblot analysis for phosphorylation of FRS2α (pFRS2α) and 44/42 MAP kinase (p44/42 MAPK) in a HEK293 Klotho cell line, which had been stimulated with either FGF2 alone or mixtures of FGF2 with increasing FGF23¹⁸⁰⁻²⁵¹. Numbers above the lanes give the amounts of peptide added in nM. To control for equal sample loading, the protein blots were probed with an antibody to Klotho. The sequences of FGF23¹⁸⁰⁻²⁵¹, FGF23¹⁸⁰⁻²⁰⁵, and FGF23²⁸⁻²⁵¹ are listed in Table 1.

FIGS. 7A-B show that FGF23 C-terminal peptides antagonize the inhibitory effect of FGF23 on sodium-coupled phosphate uptake. Opossum kidney OKP cells were stimulated with either FGF23 $^{28-251}$ or FGF23 $^{180-251}$ or FGF23 $^{180-205}$ alone, or mixtures of FGF23 $^{28-251}$ with either increasing FGF23 $^{180-251}$ (FIG. 7A) or increasing FGF23 $^{180-205}$ (FIG. 7B). After 4 h cell stimulation, sodium-dependent phosphate uptake was measured. Bars and error bars denote mean \pm SE. An asterisk indicates P<0.05 by ANOVA.

FIG. **8** shows that the FGF23 C-terminal tail peptide antagonizes phosphaturic activity of FGF23 in vivo. FGF23²⁸⁻²⁵¹ (0.1 μ g kg body weight⁻¹) or FGF23¹⁸⁰⁻²⁵¹ (0.1 μ g kg body weight⁻¹) were injected IV into Sprague-Dawley rats. Serum and urine parameters were measured and calculated before and 3 h after injection. FE P_i : fractional excretion of phosphate; $U_{Pi}V$: phosphate excretion rate; Cl_{Cr} : creatinine clearance.

FIGS. 9A-C show that the FGF23 C-terminal tail peptide inhibits the ability of FGF23 to down-regulate the expression of the type II sodium-coupled phosphate transporters NaP_i-2A and NaP,-2C in the apical brush border membrane. Sprague-Dawley rats were given IV FGF23²⁸⁻²⁵¹ (0.1 μ g kg body weight⁻¹), FGF23¹⁸⁰⁻²⁵¹ (0.1 μ g kg body weight⁻¹), or vehicle, and renal tissue was isolated 3 h post injection. FIG. 9A shows representative images of cryosections of renal tissue processed for NaP_i-2A immunostaining and β-actin staining. FIGS. 9B-C show NaP_i-2A (FIG. 9B) and NaP_i-2C (FIG. 9C) protein abundance in renal cortex tissue (cortex) and isolated brush border membrane vesicles (BBMV). Equal amounts of protein were separated by SDS-PAGE and probed for either NaP_i-2A or NaP_i-2C, and β-actin by immunoblot. Representative protein blots with tissues from 6 rats are shown in the upper panels of each figure part. Summarized data of renal tissue samples from 12 rats are presented in the bottom panels. Bars and error bars are mean±SE. An asterisk denotes P<0.05 by ANOVA.

FIG. 10 shows that FGF23 C-terminal peptides alleviate renal phosphate wasting in Hyp mice. FGF23¹⁸⁰⁻²⁵¹ (1 mg), FGF23¹⁸⁰⁻²⁰⁵ (860 μ g), or vehicle were injected IP into Hyp mice. Urine phosphate (urinary P_i) and creatinine levels and serum phosphate levels (serum P_i) were measured before and 5 at the indicated time points after the injection. Urinary P_i of Hyp mice treated with FGF23¹⁸⁰⁻²⁰⁵ was not determined (ND). Bars and error bars are mean \pm SE. An asterisk denotes P<0.05 by ANOVA, two asterisks denote P<0.01.

DETAILED DESCRIPTION OF THE INVENTION

A first aspect of the present invention relates to a method of treating hypophosphatemia in a subject. This method involves selecting a subject with hypophosphatemia associated with elevated or normal FGF23 levels and administering to the selected subject an inhibitor of FGF23-Klotho-FGF receptor complex formation under conditions effective to treat the hypophosphatemia.

As described by Goetz et al. (Goetz et al., "Molecular 20 Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members," Mol Cell Biol 3417-3428 (2007), which is hereby incorporated by reference in its entirety), the mammalian fibroblast growth factor (FGF) family comprises 18 polypeptides 25 (FGF1 to FGF10 and FGF16 to FGF23), which participate in a myriad of biological processes during embryo genesis, including but not limited to gastrulation, body plan formation, somitogenesis, and morphogenesis of essentially every tissue/organ such as limb, lung, brain, and kidney (Bottcher et 30 al., "Fibroblast Growth Factor Signaling During Early Vertebrate Development," Endocr Rev 26:63-77 (2005), and Thisse et al., "Functions and Regulations of Fibroblast Growth Factor Signaling During Embryonic Development," Dev Biol 287:390-402 (2005), which are hereby incorporated 35 by reference in their entirety).

FGFs execute their biological actions by binding to, dimerizing, and activating FGF receptor (FGFR) tyrosine kinases, which are encoded by four distinct genes (Fgfr1 to Fgfr4). Prototypical FGFRs consist of an extracellular domain composed of three immunoglobulin-like domains, a single-pass transmembrane domain, and an intracellular domain responsible for the tyrosine kinase activity (Mohammadi et al., "Structural Basis for Fibroblast Growth Factor Receptor Activation," *Cytokine Growth Factor Rev* 16:107-137 (2005), 45 which is hereby incorporated by reference in its entirety).

FGF23 is a gene cloned by Itoh et al. at Kyoto University (WO 01/66596 to Itoh et al., which is hereby incorporated by reference in its entirety). FGF23 mRNA is expressed mainly in the brain, preferentially in the ventrolateral thalamic 50 nucleus. It is also expressed in the thymus at low levels (Yamashita et al., "Identification of a Novel Fibroblast Growth Factor, FGF-23, Preferentially Expressed in the Ventrolateral Thalamic Nucleus of the Brain," *Biochem Biophys Res Comm* 277(2):494-498 (2000), which is hereby incorpo-

10

rated by reference in its entirety). The tissue with the highest level of FGF23 expression is bone (osteocytes and osteoblasts), where it is highly expressed during phases of active bone remodeling (Riminucci et al., "FGF-23 in Fibrous Dysplasia of Bone and its Relationship to Renal Phosphate Wasting," JClin Invest 112:683-692 (2003), which is hereby incorporated by reference in its entirety). Expression of FGF23 in dendritic cells has also been reported (Katoh et al., "Comparative Genomics on Mammalian Fgf6-Fgf23 Locus.," Int J Mol Med 16(2):355-358 (2005), which is hereby incorporated by reference in its entirety). See also Zhang et al., "Receptor Specificity of the Fibroblast Growth Factor Family," J Biol Chem 281(23):15694-15700; Yu et al., "Analysis of the Biochemical Mechanisms for the Endocrine Actions of Fibroblast Growth Factor-23," Endocrinology 146(11):4647-4656, which are hereby incorporated by reference in their entirety.

The number of principal FGFRs is increased from four to seven due to a major tissue-specific alternative splicing event in the second half of the immunoglobulin-like domain 3 of FGFR1 to FGFR3, which creates epithelial lineage-specific b and mesenchymal lineage-specific c isoforms (Mohammadi et al., "Structural Basis for Fibroblast Growth Factor Receptor Activation," Cytokine Growth Factor Rev 16:107-137 (2005) and Ornitz et al., "Fibroblast Growth Factors," Genome Biol 2(3):reviews3005.1-reviews3005.12 (2001), which are hereby incorporated by reference in their entirety). Generally, the receptor-binding specificity of FGFs is divided along this major alternative splicing of receptors whereby FGFRb-interacting FGFs are produced by epithelial cells (Ornitz et al., "Fibroblast Growth Factors," Genome Biol 2(3):reviews3005.1-reviews3005.12 (2001), which is hereby incorporated by reference in its entirety). These reciprocal expression patterns of FGFs and FGFRs result in the establishment of a paracrine epithelial-mesenchymal signaling which is essential for proper organogenesis and patterning during development as well as tissue homeostasis in the adult organism.

Based on phylogeny and sequence identity, FGFs are grouped into seven subfamilies (Ornitz et al., "Fibroblast Growth Factors," *Genome Biol* 2(3):reviews3005.1-reviews3005.12 (2001), which is hereby incorporated by reference in its entirety). The FGF core homology domain (approximately 120 amino acids long) is flanked by N- and C-terminal sequences that are highly variable in both length and primary sequence, particularly among different FGF subfamilies. The core region of FGF19 shares the highest sequence identity with FGF21 (38%) and FGF23 (36%), and therefore, these ligands are considered to form a subfamily.

The nucleic acid and amino acid sequences for *homo sapiens* (human) FGF23 may be found using the following reference sequence ID number on GenBank, NM_020638. The human FGF23 gene coding sequence (1-251) has a nucleotide sequence of SEQ ID NO: 2 as follows:

cggcaaaaag gagggaatcc agtctaggat cctcacacca gctacttgca agggagaagg
aaaaggccag taaggcctgg gccaggagag tcccgacagg agtgtcaggt ttcaatctca
gcaccagcca ctcagagcag ggcacgatgt tgggggcccg cctcaggctc tgggtctgtg
ccttgtgcag cgtctgcagc atgagcgtcc tcagagccta tcccaatgcc tccccactgc
tcggctccag ctggggtggc ctgatccacc tgtacacagc cacagccagg aacagctacc
acctqcagat ccacaagaat qqccatgtqq atqqcqcacc ccatcagacc atctacagtq

ccctgatgat cagatcagag gatgctggct ttgtggtgat tacaggtgtg atgagcagaa gatacetetg catggattte agaggeaaca tttttggate acaetattte gaeeeggaga actgcaggtt ccaacaccag acgctggaaa acgggtacga cgtctaccac tctcctcagt atcacttcct ggtcagtctg ggccgggcga agagagcctt cctgccaggc atgaacccac ccccgtactc ccagttcctg tcccggagga acgagatccc cctaattcac ttcaacaccc ccataccacg geggeacace eggagegeeg aggaegacte ggagegggae eccetgaacg tgctgaagcc ccgggcccgg atgaccccgg ccccggcctc ctgttcacag gagctcccga gcgccgagga caacagcccg atggccagtg acccattagg ggtggtcagg ggcggtcgag tgaacacgca cgctggggga acgggcccgg aaggctgccg ccccttcgcc aagttcatct agggtcgctg gaagggcacc ctctttaacc catccctcag caaacgcagc tcttcccaag gaccaggtcc cttgacgttc cgaggatggg aaaggtgaca ggggcatgta tggaatttgc tgcttctctg gggtcccttc cacaggaggt cctgtgagaa ccaacctttg aggcccaagt catggggttt caccgccttc ctcactccat atagaacacc tttcccaata ggaaacccca acaggtaaac tagaaatttc cccttcatga aggtagagag aaggggtctc tcccaacata tttctcttcc ttgtgcctct cctctttatc acttttaagc ataaaaaaaa aaaaaaaaa aaaaaaaaa aaaagcagtg ggttcctgag ctcaagactt tgaaggtgta gggaagagga aatcggagat cccagaagct tctccactgc cctatgcatt tatgttagat gccccgatcc cactggcatt tgagtgtgca aaccttgaca ttaacagctg aatggggcaa gttgatgaaa acactacttt caageetteg ttetteettg ageatetetg gggaagaget gteaaaagae tggtggtagg ctggtgaaaa cttgacagct agacttgatg cttgctgaaa tgaggcagga atcataatag aaaactcagc ctccctacag ggtgagcacc ttctgtctcg ctgtctccct ctgtgcagcc acagccagag ggcccagaat ggccccactc tgttcccaag cagttcatga tacagootca cottttggco coatototgg tttttgaaaa tttggtotaa ggaataaata gettttacae tggeteacga aaatetgeee tgetagaatt tgetttteaa aatggaaata aattccaact ctcctaagag gcatttaatt aaggctctac ttccaggttg agtaggaatc cattetgaac aaactacaaa aatgtgactg ggaagggggc tttgagagac tgggactgct ctgggttagg ttttctgtgg actgaaaaat cgtgtccttt tctctaaatg aagtggcatc aaggactcag ggggaaagaa atcaggggac atgttataga agttatgaaa agacaaccac atggtcaggc tcttgtctgt ggtctctagg gctctgcagc agcagtggct cttcgattag ttaaaactet eetaggetga eacatetggg teteaateee ettggaaatt ettggtgeat taaatgaagc cttaccccat tactgcggtt cttcctgtaa gggggctcca ttttcctccc tototttaaa tgaccaccta aaggacagta tattaacaag caaagtcgat tcaacaacag cttcttccca gtcacttttt tttttctcac tgccatcaca tactaacctt atactttgat ctattctttt tggttatgag agaaatgttg ggcaactgtt tttacctgat ggttttaagc tgaacttgaa ggactggttc ctattctgaa acagtaaaac tatgtataat agtatatagc catgcatggc aaatatttta atatttctgt tttcatttcc tgttggaaat attatcctgc ataatagcta ttggaggctc ctcagtgaaa gatcccaaaa ggattttggt ggaaaactag ttgtaatctc acaaactcaa cactaccatc aggggttttc tttatggcaa agccaaaata gctcctacaa tttcttatat ccctcgtcat gtggcagtat ttatttattt atttggaagt ttgcctatcc ttctatattt atagatattt ataaaaatgt aacccctttt tcctttcttc

10

tgtttaaaat aaaaataaaa tttatctcag cttctgttag cttatcctct ttgtagtact acttaaaagc atgtcggaat ataagaataa aaaggattat gggaggggaa cattagggaa atccagagaa ggcaaaattg aaaaaaagat tttagaattt taaaattttc aaagattct tccattcata aggagactca atgattttaa ttgatctaga cagaattatt taagttttat caatattgga tttctggt

As described above, reference sequence ID number on Genbank NM_020638 shows the nucleotide sequence for human FGF23 (i.e. SEQ ID NO:2) encodes a protein with the amino acid sequence of SEQ ID NO: 3 as follows:

mlgarlrlwvcalcsvcsmsvlraypnaspllgsswgglihlytata rnsyhlqihknghvdgaphqtiysalmirsedagfvvitgvmsrryl cmdfrgnifgshyfdpencrfqhqtlengydvyhspqyhflvslgra kraflpgmnpppysqflsrrneiplihfntpiprrhtrsaeddserd -COntinued plnvlkprarmtpapascsqelpsaednspmasdplgvvrggrvnth aggtgpegcrpfakfi

Furthermore, Luethy et al. have cloned the FGF23 gene to produce a transgenic mouse that expresses the gene, and analyzed the phenotype of the mouse (WO 01/61007 to Luethy et al., which is hereby incorporated by reference in its entirety). See also U.S. Patent Application Publication No. 20050106755 to Zahradnik et al., which is hereby incorporated by reference in its entirety).

The nucleic acid and amino acid sequences for the *Mus musculus* (mouse) FGF23 may be found at GenBank, NM_022657. The mouse FGF23 gene coding sequence has a nucleotide sequence SEQ ID NO: 4 as follows:

gaatctagcc caggatcccc acctcagttc tcagcttctt cctaggaaga agagaaaggc cagcaagggc ccagcctgtc tgggagtgtc agatttcaaa ctcagcatta gccactcagt gctgtgcaat gctagggacc tgccttagac tcctggtggg cgtgctctgc actgtctgca gettgggeae tgetagagee tateeggaea etteeceatt gettggetee aactggggaa geetgaceca cetgtacaeg getacageca ggaceageta teacetaeag atecataggg atggtcatgt agatggcacc ccccatcaga ccatctacag tgccctgatg attacatcag aggacgccgg ctctgtggtg ataacaggag ccatgactcg aaggttcctt tgtatggatc tccacggcaa catttttgga tcgcttcact tcagcccaga gaattgcaag ttccgccagt ggacgctgga gaatggctat gacgtctact tgtcgcagaa gcatcactac ctggtgagcc tgggccgcgc caagcgcatc ttccagccgg gcaccaaccc gccgcccttc tcccagttcc tggctcgcag gaacgaggtc ccgctgctgc atttctacac tgttcgccca cggcgccaca cgcgcagcgc cgaggaccca ccggagcgcg acccactgaa cgtgctcaag ccgcggcccc gegecaegee tgtgeetgta teetgetete gegagetgee gagegeagag gaaggtggee ccgcagccag cgatcctctg ggggtgctgc gcagaggccg tggagatgct cgcgggggcg egggaggege ggataggtgt egeceettte ceaggttegt etaggteece aggeeagget gegteegeet ceatecteea gteggtteag ceeaegtaga ggaaggaeta gggtaeeteg aggatgtetg etteteteee tteeetatgg geetgagagt caeetgegag gtteeageea ggcaccgcta ttcagaatta agagccaacg gtgggaggct ggagaggtgg cgcagacagt teteageace cacaaatace tgtaatteta geteeagggg aatetgtaet cacacacaca cacatccaca cacacacaca cacacataca tgtaatttta aatgttaatc tgatttaaag accccaacag gtaaactaga cacgaagctc tttttatttt attttactaa caggtaaacc agacacttgg cctttattag ccgggtctct tgcctagcat tttaatcgat cagttagcac gaggaaagag ttcacgcctt gaacacaggg aagaggccat ctctgcagct tctagttact attotgggat toacgggtgt ttgagtttga gcaccttgac ottaatgtot toactaggca agtogaagaa agacgcgcat ttottotott tgggaagago tttggattgg cgggaggotg

-continued acaaggacac ctaaaccgaa cacatttcag agttcagcct ccctgaggaa tgattcgcca atgattctgt gataggacca gtcagtagct tttgaatttg ccctggctca gcaaagtcta ccttgctagg gtgttttgca aaatgcaaac gctcgaactc tctctaaaga ggcattttta gtgaaagcct ccgctagcag gttgacttgt aatatattct aagcgaatgt gcccggggtg ggggtggagg tggggtgggg gagaagggtc cttgagacct cggattgttc taggttaggg tttctgtgaa gagg

As described above, reference sequence ID number on Genbank NM_022657 shows the nucleotide sequence for mouse FGF23 (i.e. SEQ ID NO: 4) encodes a protein with the 15 ggaggadrcrpfprfv amino acid sequence of SEQ ID NO: 5 as follows:

 $\verb|mlgtclr|| lvgvlctvcslgtaraypdtspllgsnwgslthlytata|$ ${\tt rtsyhlqihrdghydgtphqtiysalmitsedagsvvitgamtrrfl}$ $\verb|cmdlhgnifgslhfspenckfrqwtlengydvylsqkhhylvslgra|\\$ krifqpgtnpppfsqflarrnevpllhfytvrprrhtrsaedpperd

-continued plnvlkprpratpvpvscsrelpsaeeggpaasdplgvlrrgrgdar

Kurosu et al. and Urakawa et al. have identified Klotho as an obligate co-receptor of FGF23 (Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J Biol Chem 281(10):6120-6123 (2006); Urakawa et al., "Klotho 20 Converts Canonical FGF Receptor Into a Specific Receptor for FGF23," Nature 444:770-774 (2006), which are hereby incorporated by reference in their entirety).

The nucleic acid and amino acid sequences for the human Klotho (i.e. SEQ ID NO: 6) gene may be found at GenBank, NM 004795. The human Klotho gene coding sequence has a nucleotide sequence of SEQ ID NO: 6 as follows:

cgcgcagcat gcccgccagc gcccgccgc gccgccgcg gccgccgccg ccgtcgctgt cgctgctgct ggtgctgctg ggcctgggcg gccgccgcct gcgtgcggag ccgggcgacg gegegeagae etgggeeegt ttetegegge etectgeeee egaggeegeg ggeetettee agggcacctt ccccgacggc ttcctctggg ccgtgggcag cgccgcctac cagaccgagg geggetggea geageaegge aagggtgegt ceatetggga taegtteaec caecaeeece tggcaccccc gggagactcc cggaacgcca gtctgccgtt gggcgccccg tcgccgctgc agecegecae eggggaegta gecagegaea getacaaeaa egtetteege gaeaeggagg cgctgcgcga gctcggggtc actcactacc gcttctccat ctcgtgggcg cgagtgctcc ccaatggcag cgcgggcgtc cccaaccgcg aggggctgcg ctactaccgg cgcctgctgg ageggetgeg ggagetggge gtgeageeeg tggteaeeet gtaeeaetgg gaeetgeeee agegeetgea ggaegeetae ggeggetggg ceaacegege cetggeegae caetteaggg attacgcgga gctctgcttc cgccacttcg gcggtcaggt caagtactgg atcaccatcg acaaccccta cgtggtggcc tggcacggct acgccaccgg gcgcctggcc cccggcatcc ggggcagece geggeteggg tacetggtgg egcacaacet cetectgget catgecaaag totggcatet ctacaatact tettteegte ceaeteaggg aggteaggtg teeattgeee taagetetea etggateaat eetegaagaa tgacegacea eageateaaa gaatgteaaa aatototgga otttgtacta ggttggtttg ocaaacccgt atttattgat ggtgactato ccgagagcat gaagaataac ctttcatcta ttctgcctga ttttactgaa tctgagaaaa agttcatcaa aggaactgct gacttttttg ctctttgctt tggacccacc ttgagttttc aacttttgga ccctcacatg aagttccgcc aattggaatc tcccaacctg aggcaactgc tttcctggat tgaccttgaa tttaaccatc ctcaaatatt tattgtggaa aatggctggt ttgtctcagg gaccaccaag agagatgatg ccaaatatat gtattacctc aaaaagttca tcatggaaac cttaaaagcc atcaagctgg atggggtgga tgtcatcggg tataccgcat ggtccctcat ggatggtttc gagtggcaca gaggttacag catcaggcgt ggactcttct

atgttgactt tctaagccag gacaagatgt tgttgccaaa gtcttcagcc ttgttctacc aaaagctgat agagaaaaat ggcttccctc ctttacctga aaatcagccc ctagaaggga catttccctg tgactttgct tggggagttg ttgacaacta cattcaagta gataccactc tgtctcagtt taccgacctg aatgtttacc tgtgggatgt ccaccacagt aaaaggctta ttaaagtgga tggggttgtg accaagaaga ggaaatccta ctgtgttgac tttgctgcca tccagcccca gatcgcttta ctccaggaaa tgcacgttac acattttcgc ttctccctgg actgggccct gatteteect etgggtaace agteceaggt gaaceacace atcetgeagt actategetg catggccage gagettgtee gtgtcaacat caccecagtg gtggccetgt ggcagcctat ggccccgaac caaggactgc cgcgcctcct ggccaggcag ggcgcctggg agaaccccta cactqccctq qcctttqcaq aqtatqcccq actqtqcttt caaqaqctcq gccatcacgt caagctttgg ataacgatga atgagccgta tacaaggaat atgacataca gtgctggcca caaccttctg aaggcccatg ccctggcttg gcatgtgtac aatgaaaagt ttaggcatgc tcagaatggg aaaatatcca tagccttgca ggctgattgg atagaacctg cctgcccttt ctcccaaaag gacaaagagg tggctgagag agttttggaa tttgacattg gctggctggc tgagcccatt ttcggctctg gagattatcc atgggtgatg agggactggc tgaaccaaag aaacaatttt cttcttcctt atttcactga agatgaaaaa aagctaatcc agggtacctt tgactttttg gctttaagcc attataccac catccttgta gactcagaaa aagaagatcc aataaaatac aatgattacc tagaagtgca agaaatgacc gacatcacgt ggctcaactc ccccagtcag gtggcggtag tgccctgggg gttgcgcaaa gtgctgaact ggctgaagtt caagtacgga gacctcccca tgtacataat atccaatgga atcgatgacg ggctgcatgc tgaggacgac cagctgaggg tgtattatat gcagaattac ataaacgaag ctctcaaagc ccacatactg gatggtatca atctttgcgg atactttgct tattcgttta acgaccgcac agetecgagg tttggeetet ategttatge tgeagateag tttgageeca aggcatccat gaaacattac aggaaaatta ttgacagcaa tggtttcccg ggcccagaaa ctctggaaag attttgtcca gaagaattca ccgtgtgtac tgagtgcagt ttttttcaca cccgaaagtc tttactggct ttcatagctt ttctattttt tgcttctatt atttctctct cccttatatt ttactactcg aagaaaggca gaagaagtta caaatagttc tgaacatttt totattoatt cattttgaaa taattatgoa gacacatoag otgttaacca tttgcacoto taagtgttgt gaaactgtaa atttcataca tttgacttct agaaaacatt tttgtggctt atgacagagg ttttgaaatg ggcataggtg atcgtaaaat attgaataat gcgaatagtg cctgaatttg ttctcttttt gggtgattaa aaaactgaca ggcactataa tttctgtaac acactaacaa aagcatgaaa aataggaacc acaccaatgc aacatttgtg cagaaatttg aatgacaaga ttaggaatat tttcttctgc acccacttct aaatttaatg tttttctgga agtagtaatt gcaagagttc gaatagaaag ttatgtacca agtaaccatt tctcagctgc cataataatg cctagtggct tcccctctgt caaatctagt ttcctatgga aaagaagatg gcagatacag gagagacgac agagggtcct aggctggaat gttcctttcg aaagcaatgc ttctatcaaa tactagtatt aatttatgta tctggttaat gacatacttg gagagcaaat tatggaaatg tgtattttat atgatttttg aggtcctgtc taaaccctgt gtccctgagg gatetgtete aetggeatet tgttgaggge ettgeacata ggaaaetttt gataagtate tgcggaaaaa caaacatgaa tcctgtgata ttgggctctt caggaagcat aaagcaattg tgaaatacag tataccgcag tggctctagg tggaggaaaag gaggaaaaag tgcttattat

gtgcaacatt atgattaatc tgattataca ccatttttga gcagatcttg gaatgaatga catgaccttt ccctagagaa taaggatgaa ataatcactc attctatgaa cagtgacact actttctatt ctttagctgt actgtaattt ctttgagttg atagttttac aaattcttaa taggttcaaa agcaatctgg tctgaataac actggatttg tttctgtgat ctctgaggtc tattttatgt ttttgctgct acttctgtgg aagtagcttt gaactagttt tactttgaac tttcacqctq aaacatqcta qtqatatcta qaaaqqqcta attaqqtctc atcctttaat gccccttaaa taagtcttgc tgattttcag acagggaagt ctctctatta cactggagct qttttataqa taaqtcaata ttqtatcaqq caaqataaac caatqtcata acaqqcattq ccaacctcac tgacacaggg tcatagtgta taataatata ctgtactata taatatatca totttagagg tatgattttt toatgaaaga taagottttg gtaatattoa ttttaaagtg gacttattaa aattggatgc tagagaatca agtttatttt atgtatatat ttttctgatt ataagagtaa tatatgttca ttgtaaaaat ttttaaaaaca cagaaactat atgcaaagaa aaaataaaaa ttatctataa tctcagaacc cagaaatagc cactattaac atttcctacg tattttattt tacatagatc atattgtata tagttagtat ctttattaat ttttattatg aaactttcct ttgtcattat tagtcttcaa aagcatgatt tttaatagtt gttgagtatt ccaccacagg aatgtatcac aacttaaccg ttcccgtttg ttagactagt ttcttattaa tgttgatgaa tgttgtttaa aaataatttt gttgctacat ttactttaat ttccttgact gtaaagagaa gtaattttgc teettgataa agtattatat taataataaa tetgeetgea actttttgcc ttctttcata atcataaaaa aa

As described above, reference sequence ID number on Genbank NM_004795 shows the nucleotide sequence for 35 human Klotho (i.e. SEQ ID NO: 6) encodes a protein with the amino acid sequence of SEQ ID NO: 7 as follows:

 ${\tt dsrnaslplgapsplqpatgdvasdsynnvfrdtealrelgvthyrf}$ siswarvlpngsagvpnreglryyrrllerlrelgvqpvvtlyhwdl pqrlqdayggwanraladhfrdyaelcfrhfggqvkywitidnpyvv $awh gy at \verb|grlapgirgs| prlgylvahn \verb|lllahakvwhlyntsfrptq|$ $\verb|ggqvsialsshwinprrmtdhsikecqks|| \verb|dfvlgwfakpvfidgdy||$ ${\tt pesmknnlssilpdftesekkfikgtadffalcfgptlsfqlldphm}$ ${\tt kfrqlespnlrqllswidlefnhpqifivengwfvsgttkrddakym}$ yylkk fimetlk aikld gvdvigy tawslmdg fewhrgy sirrglfyvdflsqdkmllpkssalfyqkliekngfpplpenqplegtfpcdfawgvvdnyiqvdttlsqftdlnvylwdvhhskrlikvdgvvtkkrksyc vdfaaiqpqiallqemhvthfrfsldwalilplgnqsqvnhtilqyy $\verb|rcmase|| vrvnitpvvalwqpmapnqg|| prllarqgawenpytalaf|$ aeyarlcfqelghhvklwitmnepytrnmtysaghnllkahalawhv ynekfrhaqngkisialqadwiepacpfsqkdkevaervlefdigwl $a \verb|epifgsgdypwvmrdwlnqrnnfllpyftedekkliqgtfdflals|$ $\verb|hyttilvdsekedpikyndylevqemtditwlnspsqvavvpwglrk|$ vlnwlkfkygdlpmyiisngiddglhaeddqlrvyymqnyinealka

-continued

hildginlcgyfaysfndrtaprfglyryaadqfepkasmkhyrkii dsngfpgpetlerfcpeeftvctecsffhtrksllafiaflffasii slslifyyskkgrrsyk

The Klotho gene encodes a 130-kDa single-pass transmembrane protein with a short cytoplasmic domain (10 amino acids) and is expressed predominantly in the kidney (Matsumara et al., "Identification of the human klotho gene 45 and its two transcripts encoding membrane and secreted klotho protein," Biochem Biophys Res Commun 242(3):626-630 (1998), which is hereby incorporated by reference in its entirety). In addition to the membrane-bound isoform of Klotho, alternative splicing and proteolytic cleavage give rise 50 to two soluble isoforms of Klotho found in the circulation (Imura et al., "Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane," FEBS Lett 565(1-3): 143-147 (2004); Kurosu et al., "Suppression of aging in mice 55 by the hormone Klotho," Science 309(5742):1829-1833 (2005); Matsumura et al., "Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein," Biochem Biophys Res Commun 242(3):626-630 (1998); Shiraki-Iida et al., "Structure of the mouse klotho 60 gene and its two transcripts encoding membrane and secreted protein," FEBS Lett 424(1-2):6-10 (1998), which are hereby incorporated by reference in their entirety). Mice carrying a loss-of-function mutation in the Klotho gene develop a syndrome resembling human aging, including shortened life 65 span, skin atrophy, muscle atrophy, osteoporosis, arteriosclerosis, and pulmonary emphysema (Kuro-o et al., "Mutation of the Mouse Klotho Gene Leads to a Syndrome Resembling

Ageing," *Nature* 390:45-51 (1997), which is hereby incorporated by reference in its entirety). Conversely, overexpression of the Klotho gene extends the life span and increases resistance to oxidative stress in mice (Kurosu et al., "Suppression of Aging in Mice by the Hormone Klotho," *Science* 309: 5 1829-1833 (2005), which is hereby incorporated by reference

in its entirety). These observations suggest that the Klotho gene functions as an aging suppressor gene.

The nucleic acid and amino acid sequences for the human FGFR1, transcript variant 1 gene may be found at GenBank, NM_023110. The FGFR1 has the nucleotide sequence of SEQ ID NO: 8 as follows:

agatgcaggg gcgcaaacgc caaaggagac caggctgtag gaagagaagg gcagagcgcc ggacageteg gecegeteee egteetttgg ggeegegget ggggaactae aaggeeeage aggcagctgc aggggggga ggcggaggag ggaccagcgc gggtgggagt gagagagcga gecetegege eeeggegg catagegete ggagegetet tgeggeeaca ggegeggegt ceteggegge gggeggeage tagegggage egggaegeeg gtgeageege agegeggga ggaacccggg tgtgccggga gctgggcggc cacgtccgga cgggaccgag acccctcgta gegeattgeg gegaectege etteceegge egegagegeg eegetgettg aaaageegeg gaacccaagg acttttctcc ggtccgagct cggggcgccc cgcagggcgc acggtacccg tgctgcagtc gggcacgccg cggcgccggg gcctccgcag ggcgatggag cccggtctgc aaggaaagtg aggcgccgcc gctgcgttct ggaggagggg ggcacaaggt ctggagaccc cgggtggcgg acgggagccc tccccccgcc ccgcctccgg ggcaccagct ccggctccat tgttcccgcc cgggctggag gcgccgagca ccgagcgccg ccgggagtcg agcgccggcc geggagetet tgegaeeeeg eeaggaeeeg aacagageee gggggeggeg ggeeggagee ggggacgegg gcacacgece getegeacaa gecaeggegg acteteeega ggeggaacet ccacgccgag cgagggtcag tttgaaaagg aggatcgagc tcactgtgga gtatccatgg agatgtggag ccttgtcacc aacctctaac tgcagaactg ggatgtggag ctggaagtgc ctcctcttct gggctgtgct ggtcacagcc acactctgca ccgctaggcc gtccccgacc ttgcctgaac aagcccagcc ctggggagcc cctgtggaag tggagtcctt cctggtccac cccggtgacc tgctgcagct tcgctgtcgg ctgcgggacg atgtgcagag catcaactgg ctgcgggacg gggtgcagct ggcggaaagc aaccgcaccc gcatcacagg ggaggaggtg gaggtgcagg actccgtgcc cgcagactcc ggcctctatg cttgcgtaac cagcagcccc togggoagtg acaccaccta cttctccgtc aatgtttcag atgctctccc ctcctcggag gatgatgatg atgatgatga ctcctcttca gaggagaaag aaacagataa caccaaacca aaccgtatgc ccgtagctcc atattggaca tccccagaaa agatggaaaa gaaattgcat gcagtgccgg ctgccaagac agtgaagttc aaatgccctt ccagtgggac cccaaacccc acactgcgct ggttgaaaaa tggcaaagaa ttcaaacctg accacagaat tggaggctac aaggtccgtt atgccacctg gagcatcata atggactctg tggtgccctc tgacaagggc aactacacct gcattgtgga gaatgagtac ggcagcatca accacacata ccagctggat gtcgtggagc ggtcccctca ccggcccatc ctgcaagcag ggttgcccgc caacaaaaca gtggccctgg gtagcaacgt ggagttcatg tgtaaggtgt acagtgaccc gcagccgcac atccagtggc taaagcacat cgaggtgaat gggagcaaga ttggcccaga caacctgcct tatgtccaga tcttgaagac tgctggagtt aataccaccg acaaagagat ggaggtgctt cacttaagaa atgtctcctt tgaggacgca ggggagtata cgtgcttggc gggtaactct atcggactct cccatcactc tgcatggttg accgttctgg aagccctgga agagaggccg gcagtgatga cctcgccct gtacctggag atcatcatct attgcacagg ggccttcctc atotootgoa tggtggggto ggtoatogto tacaagatga agagtggtac caagaagagt gacttccaca gccagatggc tgtgcacaag ctggccaaga gcatccctct gcgcagacag

gtaacagtgt ctgctgactc cagtgcatcc atgaactctg gggttcttct ggttcggcca tracggetet ceteragtgg garteceatg ctagragggg tetetgagta tgagettece gaagaccctc gctgggagct gcctcgggac agactggtct taggcaaacc cctgggagag ggctgctttg ggcaggtggt gttggcagag gctatcgggc tggacaagga caaacccaac cgtgtgacca aagtggctgt gaagatgttg aagtcggacg caacagagaa agacttgtca gacctgatet cagaaatgga gatgatgaag atgateggga ageataagaa tateateaae ctgctggggg cctgcacgca ggatggtccc ttgtatgtca tcgtggagta tgcctccaag ggcaacctgc gggagtacct gcaggcccgg aggcccccag ggctggaata ctgctacaac cccagccaca acccagagga gcagctctcc tccaaggacc tggtgtcctg cgcctaccag gtggcccqag gcatggagta tctggcctcc aagaagtgca tacaccgaga cctggcagcc aggaatgtcc tggtgacaga ggacaatgtg atgaagatag cagactttgg cctcgcacgg qacattcacc acatcqacta ctataaaaaq acaaccaacq qccqactqcc tqtqaaqtqq atggcacccg aggcattatt tgaccggatc tacacccacc agagtgatgt gtggtctttc ggggtgctcc tgtgggagat cttcactctg ggcggctccc cataccccgg tgtgcctgtg gaggaacttt tcaagctgct gaaggagggt caccgcatgg acaagcccag taactgcacc aacgagctgt acatgatgat gcgggactgc tggcatgcag tgccctcaca gagacccacc ttcaagcagc tggtggaaga cctggaccgc atcgtggcct tgacctccaa ccaggagtac ctggacctgt ccatgcccct ggaccagtac tcccccagct ttcccgacac ccggagctct acgtgctcct caggggagga ttccgtcttc tctcatgagc cgctgcccga ggagccctgc ctgccccgac acccagccca gcttgccaat ggcggactca aacgccgctg actgccaccc acacgccctc cccagactcc accgtcagct gtaaccctca cccacagccc ctgctgggcc caccacctgt ccgtccctgt cccctttcct gctggcagga gccggctgcc taccaggggc ctteetgtgt ggeetgeett caccecacte ageteacete teeteecac teeteteeac ctgctggtga gaggtgcaaa gaggcagatc tttgctgcca gccacttcat cccctcccag atgttggacc aacacccctc cctgccacca ggcactgcct ggagggcagg gagtgggagc caatgaacag gcatgcaagt gagagcttcc tgagctttct cctgtcggtt tggtctgttt tgeetteace cataageece tegeactetg gtggeaggtg cettgteete agggetacag cagtagggag gtcagtgctt cgtgcctcga ttgaaggtga cctctgcccc agataggtgg aggatggtga ggcgaaggcc aggttggggg cagtgttgtg gccctggggc ccagcccaa actgggggct ctgtatatag ctatgaagaa aacacaaagt gtataaatct gagtatatat ttacatgtct ttttaaaagg gtcgttacca gagatttacc catcgggtaa gatgctcctg gtggctggga ggcatcagtt gctatatatt aaaaacaaaa aagaaaaaaa aggaaaatgt ttttaaaaag gtcatatatt ttttgctact tttgctgttt tattttttta aattatgttc taaacctatt ttcagtttag gtccctcaat aaaaattgct gctgcttcat ttatctatgg gctgtatgaa aagggtggga atgtccactg gaaagaaggg acacccacgg gccctggggc taggtetgte eegagggeac egeatgetee eggegeaggt teettgtaac etettettee taggteetge acceagaeet caegaegeae eteetgeete teegetgett ttggaaagte agaaaaagaa gatgtetget tegagggeag gaaceecate catgeagtag aggegetggg cagagagtca aggcccagca gccatcgacc atggatggtt tcctccaagg aaaccggtgg

-continued ggttgggctg gggaggggc acctacctag gaatagccac ggggtagagc tacagtgatt aagaggaaag caagggcgcg gttgctcacg cctgtaatcc cagcactttg ggacaccgag gtgggcagat cacttcaggt caggagtttg agaccagcct ggccaactta gtgaaacccc atototacta aaaatgcaaa aattatooag goatggtggo acacgcotgt aatoccagot ccacaggagg ctgaggcaga atcccttgaa gctgggaggc ggaggttgca gtgagccgag attqcqccat tqcactccaq cctqqqcaac aqaqaaaaca aaaaqqaaaa caaatqatqa aggtctgcag aaactgaaac ccagacatgt gtctgccccc tctatgtggg catggttttg ccagtgcttc taagtgcagg agaacatgtc acctgaggct agttttgcat tcaggtccct ggcttcgttt cttgttggta tgcctcccca gatcgtcctt cctgtatcca tgtgaccaga ctqtatttqt tqqqactqtc qcaqatcttq qcttcttaca qttcttcctq tccaaactcc atcctqtccc tcaqqaacqq qqqqaaaatt ctccqaatqt ttttqqtttt ttqqctqctt ggaatttact tetgecacet getggteate aetgteetea etaagtggat tetggeteee cegtacetea tggeteaaac taccacteet cagtegetat attaaagett atattttget qqattactqc taaatacaaa aqaaaqttca atatqttttc atttctqtaq qqaaaatqqq attgctgctt taaatttctg agctagggat tttttggcag ctgcagtgtt ggcgactatt gtaaaattct ctttgtttct ctctgtaaat agcacctgct aacattacaa tttgtattta tgtttaaaga aggcatcatt tggtgaacag aactaggaaa tgaattttta gctcttaaaa gcatttgctt tgagaccgca caggagtgtc tttccttgta aaacagtgat gataatttct gccttggccc taccttgaag caatgttgtg tgaagggatg aagaatctaa aagtcttcat aagtoottgg gagaggtgot agaaaaatat aaggoactat cataattaca gtgatgtoot tgctgttact actcaaatca cccacaaatt tccccaaaga ctgcgctagc tgtcaaataa aagacagtga aattgacctg aaaaaaaaa aaaaaaa

As described above, reference sequence ID number on Genbank NM_023110 shows the nucleotide sequence for $human\ FGFR1,\ transcript\ variant\ 1\ (i.e.\ SEQ\ ID\ NO:\ 8)\ 40\ \ {}^{ngrlpvkwmapealfdriythqsdvwsfgvllweiftlggspypgvp}$ encodes a protein with the amino acid sequence of SEQ ID NO: 9 as follows:

 $\verb|mwswkcllfwav|| vtatictarpsptlpeqaqpwgapvevesflvhp|$ $\verb|gdllqlrcr|| rddvqsinw|| rdgvqlaesnrtritgeevevqdsvpa|$ dsglyacvtsspsgsdttyfsvnvsdalpsseddddddssseeket ${\tt dntkpnrmpvapywtspekmekklhavpaaktvkfkcpssgtpnptl}$ rwlkngkefkpdhriggykvryatwsiimdsvvpsdkgnytcivene ygsinhtyqldvversphrpilqaglpanktvalgsnvefmckvysd pqphiqwlkhievngskigpdnlpyvqilktagvnttdkemevlhlr ${\tt nvsfedageytclagnsiglshhsawltvlealeerpavmtsplyle}$ $\verb|iiiyctgafliscmvgsvivykmksgtkksdfhsqmavhklaksipl|$ $\verb"rrqvtvs" adssasmnsgvllvrpsrlsssgtpmlagvseyelpedpr"$ welprdrlvlgkplgegcfgqvvlaeaigldkdkpnrvtkvavkmlksdatekdlsdlisememmkmigkhkniinllgactqdgplyviveya skgnlreylqarrppgleycynpshnpeeqlsskdlvscayqvargm eylaskkcihrdlaarnvlvtednvmkiadfglardihhidyykktt

-continued

 ${\tt veelfkllkeghrmdkpsnctnelymmmrdcwhavpsqrptfkqlve}$ ${\tt dldrivalts} n qeyldls {\tt mpldqyspsfpdtrsstcssgedsvfshe}$ plpeepclprhpaqlangglkrr

The protein encoded by this FGFR1, transcript variant 1 gene is a member of the fibroblast growth factor receptor (FGFR) family, where amino acid sequences are highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment, and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds both acidic and basic fibroblast growth factors and is involved in limb induction. Mutations in this gene have been associated with Pfeiffer syndrome, Jackson-Weiss syndrome, Antley-Bixler syndrome, osteoglophonic dysplasia, and autosomal dominant Kallmann syndrome. See Itoh et al., "The Complete 65 Amino Acid Sequence of the Shorter Form of Human Basic Fibroblast Growth Factor Receptor Deduced from its cDNA," Biochem Biophys Res Commun 169(2): 680-685 (1990);

Dode et al., "Kallmann Syndrome: Fibroblast Growth Factor Signaling Insufficiency?" *J Mol Med* 82(11):725-34 (2004); Coumoul et al., "Roles of FGF Receptors in Mammalian Development and Congenital Diseases," Birth Defects Res C Embryo Today 69(4):286-304 (2003), which are hereby incorporated by reference in their entirety. Alternatively, spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized.

The nucleic acid and amino acid sequences for FGFR1 variants 2-6 may be found using the following reference sequence ID numbers on GenBank: FGFR1, transcript variant 2 (NM_015850), FGFR1, transcript variant 3 (NM_ 023105), FGFR1, transcript variant 4 (NM_023106), 15 FGFR1, transcript variant 5 (NM_023107), FGFR1, transcript variant 6 (NM_023108), and FGFR1, transcript variant 9, (NM_023111). These sequences are hereby incorporated by reference in their entirety.

Hypophosphatemia may be due to renal phosphate wasting 20 (such as, autosomal dominant hypophosphatemic rickets (ADHR), X-linked hypophosphatemia (XLH), autosomal recessive hypophosphatemic rickets (ARHR), fibrous dysplasia (FD), McCune-Albright syndrome complicated by fibrous dysplasia (MAS/FD), Jansen's metaphyseal chondrodyspla- 25 FGF23²⁸⁻²⁵¹ are listed in Table 1. sia (Jansen's Syndrome), autosomal dominant polycystic kidney disease (ADPKD), tumor-induced osteomalacia (TIO), and chronic metabolic acidosis), other inherited or acquired renal phosphate wasting disorders, alcoholic and diabetic ketoacidosis, acute asthma, chronic obstructive pulmonary disease (COPD), drug treatment of COPD, sepsis, recovery from organ (in particular, kidney) transplantation, parenteral iron administration, salicylate intoxication, severe trauma, chronic treatment with sucralfate and/or antacids, 35 mechanical ventilation, eating disorder (such as, anorexia nervosa and bulimia nervosa), or the refeeding syndrome.

For each method, Klotho can have a nucleotide sequence of SEQ ID NO:6 and the FGF23 may have a nucleotide sequence of SEO ID NO:2.

Administration of the inhibitor of FGF23-Klotho-FGF receptor complex formation may be carried out orally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation, by implantation, by intracavitary or intravesical instillation, intraocularly, 45 intraarterially, intralesionally, transdermally, or by application to mucous membranes. The inhibitor may be administered with a pharmaceutically-acceptable carrier.

For the purpose of the present invention the following terms are defined below.

The term "hypophosphatemia" refers to serum phosphate concentration below the normal range of 2.2 to 4.9 mg/dl (Dwyer et al., "Severe hypophosphatemia in postoperative patients," Nutr Clin Pract 7(6):279-283 (1992); Alon et al., "Calcimimetics as an adjuvant treatment for familial hypo- 55 phosphatemic rickets," Clin J Am Soc Nephrol 3(3):658-664 (2008), which are hereby incorporated by reference in their entirety).

The term "renal phosphate wasting" refers to an inherited or acquired condition in which renal tubular reabsorption of 60 phosphate is impaired.

The term "disease" or "disorder" is used interchangeably herein, and refers to any alteration in state of the body or of some of the organs, interrupting or disturbing the performance of the functions and/or causing symptoms such as 65 discomfort, dysfunction, distress, or even death to the person afflicted or those in contact with a person. A disease or dis28

order can also relate to a distemper, ailing, ailment, malady, disorder, sickness, illness, complaint, inderdisposion, or affectation.

The terms "treat", "treating", "treatment" and the like are used interchangeably herein and mean obtaining a desired pharmacological and/or physiological effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of partially or completely curing a disease and/or adverse effect attributed the disease. "Treating" as used herein covers treating a disease in a vertebrate and particularly a mammal and most particularly a human, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e. arresting its development; or (c) relieving the disease, i.e. causing regression of the disease.

A "subject" can be any mammal, particularly farm animals, mammalian pets, and humans.

The inhibitor used to treat hypophosphatemia may be the C-terminal tail peptide of FGF23. The C-terminal tail peptide of FGF23 has an amino acid sequence of SEQ ID NO:11 or SEQ ID NO:12.

The sequences of FGF23¹⁸⁰⁻²⁵¹, FGF23¹⁸⁰⁻²⁰⁵, and

TABLE 1 Schematic representation of the

structure of FGF23 fragments

ο.		ruccure or rurzs rraqments
J	Name of Peptide	Amino Acid Sequence
5	FGF23 ²⁸⁻²⁵¹ (SEQ ID NO: 10	asp llgsswggli hlytatarns yhlqihkngh 0) vdgaphqtiy salmirseda gfvvitgvms rrylcmdfrg nifgshyfdp encrfqhqtl engydvyhsp qyhflvslgr akraflpgmn pppysqflsr rneiplihfn tpiprrhtr saeddserdpl nvlkprarmt papascsqel psaednspma sdplgvvrgg rvnthaggtg pegcrpfakfi
0	FGF23 ¹⁸⁰⁻²⁵¹ (SEQ ID NO: 1:	s aeddserdpl nvlkprarmt papascsqel 1)psaednspma sdplgvvrgg rvnthaggtg pegcrpfakf i
5	FGF23 ¹⁸⁰⁻²⁰⁵ (SEQ ID NO: 12	s aeddserdpl nvlkprarmt papas 2)

The invention is particularly directed toward targeting FGF23-Klotho-FGF receptor complex formation which makes it possible to treat patients which have experienced hypophosphatemia associated with elevated or normal FGF23 levels or which would be expected to experience hypophosphatemia associated with elevated or normal FGF23 levels and thus is particularly directed towards preventing, inhibiting, or relieving the effects of hypophosphatemia. A subject is "treated" provided the subject experiences a therapeutically detectable and beneficial effect, which may be measured based on a variety of different criteria generally understood by those skilled in the art to be desirable with respect to the treatment of diseases related to hypophosphatemia.

The compounds of the present invention can be administered alone or with suitable pharmaceutical carriers, and can be in solid or liquid form such as, tablets, capsules, powders, solutions, suspensions, or emulsions.

The active compounds of the present invention may be orally administered, for example, with an inert diluent, or with an assimilable edible carrier, or they may be enclosed in

hard or soft shell capsules, or they may be compressed into tablets, or they may be incorporated directly with the food of the diet. For oral therapeutic administration, these active compounds may be incorporated with excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, and 5 the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compound in these compositions may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of the unit. The amount of active compound in such 10 therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions according to the present invention are prepared so that an oral dosage unit contains between about 1 and 250 mg of active compound.

The tablets, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch, or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, or saccharin. When the dosage unit form is a capsule, 20 it may contain, in addition to materials of the above type, a liquid carrier, such as a fatty oil.

Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar, or both. A syrup 25 may contain, in addition to active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye, and flavoring such as cherry or orange flavor.

These active compounds may also be administered parenterally. Solutions or suspensions of these active compounds can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut 35 oil, soybean oil, or mineral oil. In general, water, saline, aqueous dextrose and related sugar solution, and glycols such as, propylene glycol or polyethylene glycol, are preferred liquid carriers, particularly for injectable solutions. Under ordinary conditions of storage and use, these preparations 40 contain a preservative to prevent the growth of microorganisms

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.

The compounds of the present invention may also be 55 administered directly to the airways in the form of an aerosol. For use as aerosols, the compounds of the present invention in solution or suspension may be packaged in a pressurized aerosol container together with suitable propellants, for example, hydrocarbon propellants like propane, butane, or 60 isobutane with conventional adjuvants. The materials of the present invention also may be administered in a non-pressurized form such as in a nebulizer or atomizer.

The compounds of the present invention may also be administered directly to the airways in the form of a dry powder. For use as a dry powder, the compounds of the present invention may be administered by use of an inhaler.

30

Exemplary inhalers include metered dose inhalers and dry powdered inhalers. A metered dose inhaler or "MDI" is a pressure resistant canister or container filled with a product such as a pharmaceutical composition dissolved in a liquefied propellant or micronized particles suspended in a liquefied propellant. The correct dosage of the composition is delivered to the patient. A dry powder inhaler is a system operable with a source of pressurized air to produce dry powder particles of a pharmaceutical composition that is compacted into a very small volume. For inhalation, the system has a plurality of chambers or blisters each containing a single dose of the pharmaceutical composition and a select element for releasing a single dose.

Suitable powder compositions include, by way of illustration, powdered preparations of the active ingredients thoroughly intermixed with lactose or other inert powders acceptable for intrabronchial administration. The powder compositions can be administered via an aerosol dispenser or encased in a breakable capsule which may be inserted by the patient into a device that punctures the capsule and blows the powder out in a steady stream suitable for inhalation. The compositions can include propellants, surfactants and cosolvents and may be filled into conventional aerosol containers that are closed by a suitable metering valve.

A second aspect of the present invention relates to a method of screening for compounds suitable for treatment of hypophosphatemia associated with elevated or normal FGF23 levels. This method involves providing: FGF23, binary FGFR-Klotho complex, and one or more candidate compounds. The FGF23, the FGFR-Klotho complex, and the candidate compounds are combined under conditions effective for the FGF23 and the binary FGFR-Klotho complex to form a ternary complex if present by themselves. The candidate compounds, which prevent formation of the complex, are identified as being potentially suitable in treating hypophosphatemia associated with elevated or normal FGF23 levels.

For this method, a plurality of candidate compounds may be tested.

The candidate compound is contacted with an assay system according to the selected assay system and candidate compound. For example, in an in vitro cell culture system, the candidate compound may be added directly to the cell culture medium, or the cells may be transfected with the candidate compound, etc.

Surface plasmon resonance (SPR) spectroscopy is an in vitro method used to determine physical interaction between two or more proteins. SPR spectroscopy is useful for confirming the existence of a protein:protein interaction predicted by other research techniques (e.g., co-immunoprecipitation, yeast two-hybrid and density gradient centrifugation). The minimal requirement for SPR spectroscopy is the availability of purified proteins, one of which will be coupled to the surface of a biosensor chip.

Size-exclusion chromatography is another in vitro method used to determine physical interaction between two or more proteins. Size-exclusion chromatography is useful for confirming the existence of a protein:protein interaction predicted by other research techniques (e.g., co-immunoprecipitation, yeast two-hybrid and density gradient centrifugation). The minimal requirement for size-exclusion chromatography is the availability of purified proteins.

A pull-down assay is yet another in vitro method used to determine physical interaction between two or more proteins. Pull-down assays are useful for confirming the existence of a protein:protein interaction predicted by other research techniques (e.g., co-immunoprecipitation, yeast two-hybrid and

density gradient centrifugation). The minimal requirement for a pull-down assay is the availability of a purified and tagged protein which will be used to capture and 'pull-down' a protein-binding partner.

A variety of interaction or binding assays can be used to 5 determine that an agent specifically binds the binary FGFR-Klotho complex, such as the SPR interaction analysis described below. One aspect of the present invention utilizes SPR analysis of FGF23 protein/peptide binding to the binary FGFR-Klotho complex. The SPR analysis involved FGF23 protein/peptide immobilization by amine coupling on flow channels of a chip. Proteins were injected over the chip at a flow rate of 50 μl min⁻¹, and at the end of each protein injection (180 s), HBS-EP buffer (10 mM HEPES-NaOH, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% (v/v) polysorbate 15 20; 50 μl min⁻¹) was flowed over the chip to monitor dissociation for 180 s. The chip surface was then regenerated by injecting 50 µl of 2.0 M NaCl in 10 mM sodium acetate, pH 4.5. To control for nonspecific binding, FHF1B, which shares structural similarity with FGFs but does not exhibit any 20 FGFR binding, was coupled to the control flow channel of the chip. For each protein injection over a FGF23 protein/peptide chip, the nonspecific responses from the FHF1B control flow channel were subtracted from the responses recorded for the flow channel onto which FGF23 protein/peptide was immo- 25 bilized. To analyze FGF23 binding to the binary FGFR1c-Klotho complex, FGF23²⁸⁻²⁵¹ was coupled to a chip, and increasing concentrations of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer were passed over the chip. To measure binding of the C-terminal tail of FGF23 30 to the binary FGFR1c-Klotho complex, FGF23 $^{180\text{-}251}$ was immobilized on a chip, and increasing concentrations of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer were passed over the chip. To examine whether the C-terminal tail of FGF23 can compete with full-length 35 FGF23 for binding to the binary FGFR1c-Klotho complex, FGF23²⁸⁻²⁵¹ was immobilized on a chip. Increasing concentrations of FGF23¹⁸⁰⁻²⁵¹ were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer, and the mixtures were passed over 40 the chip. As a control, competition of FGF23 in solution with immobilized FGF23 for binding to the binary FGFR1c-Klotho complex was studied. Increasing concentrations of FGF23²⁸⁻²⁵¹ were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-45 EP buffer, and the mixtures were passed over the FGF23 chip. Competition of the FGF23 C-terminal tail peptide with fulllength FGF23 for binding to the binary FGFR1c-Klotho complex was also studied using the "reverse" SPR assay format, where FGF23¹⁸⁰⁻²⁵¹ was immobilized on a chip and mixtures 50 of a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho with increasing concentrations of FGF23²⁸⁻²⁵¹ were passed over the chip. As a control, competition of FGF23 C-terminal tail peptide in solution with immobilized FGF23 C-terminal tail peptide for binding to the 55 binary FGFR1c-Klotho complex was analyzed. Increasing concentrations of FGF23¹⁸⁰⁻²⁵¹ were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer, and the mixtures were passed over the $FGF23^{180-251}$ chip. To verify the specificity of the inter- 60action between the FGF23 C-terminal tail and the FGFR1c-Klotho complex, FGF23²⁸⁻²⁵¹ was immobilized on a chip. Increasing concentrations of FGF21¹⁶⁸⁻²⁰⁹ were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer, and the mixtures were 65 passed over the chip. In addition, the ability of the FGF23 C-terminal tail peptide to interfere with binary complex for32

mation between βKlotho and either FGF19 or FGF21 was tested, as was its ability to interfere with ternary complex formation between βKlotho, FGFR, and either FGF19 or FGF21. FGF19²³⁻²¹⁶ and FGF21²⁹⁻²⁰⁹ were immobilized on two flow channels of a chip. FGF23¹⁸⁰⁻²⁵¹ and the ectodomain of βKlotho were mixed at a molar ratio of 2:1, and the mixture was injected over the chip. Next, FGF23¹⁸⁰ 251 and the 1:1 complex of the ectodomains of FGFR1c and βKlotho were mixed at a molar ratio of 10:1, and the mixture was passed over the FGF19/FGF21 chip. To examine whether a C-terminal FGF23 peptide comprising the minimal binding epitope for the binary FGFR-Klotho complex can compete with full-length FGF23 for binding to FGFR1c-Klotho, increasing concentrations of FGF23 $^{180\text{-}205}$ were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer, and the mixtures were passed over a chip onto which FGF23²⁸⁻²⁵¹ had been immobilized.

Size-exclusion chromatography may also be used to determine that an agent specifically binds the binary FGFR-Klotho complex. One aspect of the present invention utilizes sizeexclusion chromatography. The size-exclusion chromatography experiments were performed on a HiLoad™ 16/60 SuperdexTM 200 prep grade column. Because of poor solubility of FGF23 proteins and FGFR1c ectodomain in low salt buffer, the experiments were carried out with 25 mM HEPES-NaOH buffer, pH7.5, containing 1.0 M NaCl. Sample injection volume was 0.3 to 1.0 ml, and the flow rate was 1.0 ml min⁻¹. Protein retention times were determined by absorbance at 280 nm. The column was calibrated with ferritin (440 kDa), immunoglobulin G (150 kDa), albumin (69.3 kDa), ovalbumin (44.3 kDa), and carbonic anhydrase (28.8 kDa). The void volume was determined using blue dextran 2,000. To examine binding of FGF23 proteins to the 1:1 binary complex of the ectodomains of FGFR1c and Klotho, FGFR1c-Klotho complex was mixed with a slight molar excess of either FGF23²⁸⁻²⁵¹ or FGF23²⁸⁻¹⁷⁹ or FGF23¹⁸⁰ 251, and the mixtures were applied to the size-exclusion column. The retention time of the FGFR1c-Klotho complex alone served as a reference point. Proteins of column peak fractions were resolved on 14% SDS-polyacrylamide gels, and then stained with Coomassie Brilliant Blue R-250.

A pull-down assay may also be used to confirm the existence of a protein:protein interaction (i.e. FGF23¹⁸⁰⁻²⁵¹ binding to the binary FGFR-Klotho complex). One aspect of the present invention utilizes pull-down assays. These assays involved subconfluent cultures of a HEK293 cell line ectopically expressing the FLAG-tagged membrane-spanning form of murine Klotho, which were harvested and lysed. Cell lysate was incubated with FGF23²⁸⁻²⁵¹, FGF23²⁸⁻²⁰⁰, FGF23²⁸⁻¹⁷⁹, FGF23¹⁸⁰⁻²⁵¹, or protein sample buffer, and binary complexes of Klotho and endogenous FGFR were isolated from cell lysate using anti-FLAG M2 agarose beads. Bead-bound proteins were resolved together with controls (FGF23 protein) on 14% SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and labeled using horse-radish peroxidase-conjugated India-His Probe.

Co-immunoprecipitation may also be used to determine that an agent specifically binds the binary FGFR-Klotho complex. One aspect of the present invention utilizes co-immunoprecipitation studies. Subconfluent cultures of a HEK293 cell line ectopically expressing the FLAG-tagged membrane-spanning form of murine Klotho were transfected with expression vectors for V5-tagged FGFR1c, FGFR3c, or FGFR4. Two days later, the cells were lysed, and FGFR-Klotho complexes were isolated from cell lysate using anti-V5 agarose beads. The beads were then incubated with either

FGF23¹⁸⁰⁻²⁵¹ or FGF23²⁸⁻²⁵¹ alone, or with mixtures of FGF23²⁸⁻²⁵¹ with either increasing FGF23¹⁸⁰⁻²⁵¹ or increasing FGF23¹⁸⁰⁻²⁰⁵. Bead-bound proteins were resolved on SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and labeled using antibodies to Klotho, FGF23, and 5 V5 epitope tag.

Serum FGF23 level may be evaluated in an individual with hypophosphatemia by immunoassay. This includes two kinds of enzyme linked immunoabsorbant assay (ELISA): a full-length assay that detects only full-length FGF23 with phosphate-lowering activity and a C-terminal assay that measures full-length as well as C-terminal fragment of FGF23. The FGF23 gene may be analyzed by direct sequencing of PCR products, and mutant FGF23 may be analyzed by Western blotting using two kinds of monoclonal antibodies that recognize N- and C-terminal portion of the processing site of FGF23 after expression in mammalian cells.

In addition to full-length peptides, the present invention provides for peptides having the biological activity of FGF23, 20 as defined herein. One skilled in the art would appreciate, based on the sequences disclosed herein, that overlapping fragments of FGF23 can be generated using standard recombinant technology, for example, that described in Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring 25 Harbor Laboratory Press, New York, 1989) and Ausubel et al. (Current Protocols in Molecular Biology, Green & Wiley, New York, 1997), which are hereby incorporated by reference in their entirety. One skilled in the art would appreciate, based on the disclosure presented herein, that the biological activity of FGF23 fragments could be tested by injecting the material into mice and evaluating whether injected mice exhibit increased renal phosphate excretion and hypophosphatemia. Induction of phosphate excretion and hypophosphatemia would serve as an indication that the FGF23 fragment 35 retained biological activity. In addition, in vitro assays can be used to test FGF23 biological activity. For example, isolated renal tubules may be perfused with FGF23 fragments and evaluated for alterations in phosphate transport, relative to wild-type FGF23. Similarly, cell culture models which pos- 40 sess the necessary FGF23 signal transduction machinery (i.e. FGF receptor 1, Klotho, and type II sodium-dependent phosphate transporter) may be transfected with FGF23 fragments and subsequently tested for alterations in phosphate transport, relative to wild-type FGF23.

In situ hybridization assays are used to measure the level of expression for normal cells and suspected cells from a tissue sample. Labelling of the nucleic acid sequence allows for the detection and measurement of relative expression levels. By comparing the level of expression between normal cells and 50 suspected cells from a tissue sample, candidate compounds suitable for treatment of hypophosphatemia associated with elevated or normal FGF23 may be identified by the reduced expression level of the gene product.

An approach to detecting the presence of a given sequence 55 or sequences in a polynucleotide sample involves selective amplification of the sequence(s) by polymerase chain reaction. PCR is described in U.S. Pat. No. 4,683,202 to Mullis et al. and Saiki et al., "Enzymatic Amplification of Beta-globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia," *Science* 230:1350-1354 (1985), which are hereby incorporated by reference in their entirety. In this method, primers complementary to opposite end portions of the selected sequence(s) are used to promote, in conjunction with thermal cycling, successive rounds of 65 primer-initiated replication. The amplified sequence(s) may be readily identified by a variety of techniques. This approach

34

is particularly useful for detecting candidate compounds suitable for treatment of hypophosphatemia associated with elevated or normal FGF23.

The present invention also relates to a method of screening the specificity of compounds which prevent formation of the FGF23-Klotho-FGFR complex. This method involves providing FGF19, providing binary FGFR-βKlotho complex, and providing one or more candidate compounds. The FGF19, the binary FGFR-βKlotho complex, and the candidate compounds are combined under conditions effective for the FGF19 and the binary FGFR-βKlotho complex to form a ternary complex if present by themselves. Candidate compounds which do not interfere with formation of the complex are identified as being specific and potentially suitable in treating hypophosphatemia associated with elevated or normal FGF23 levels.

This aspect of the present invention is carried out with many of the procedures described with respect to the screening method of the second aspect of the present invention as described above. FGF19 can be replaced with FGF21. The FGF receptor may have the amino acid sequence of SEQ ID NO:9. This aspect of the present invention can be carried out using surface plasmon resonance spectroscopy.

EXAMPLES

The following examples are provided to illustrate embodiments of the present invention but are by no means intended to limit its scope.

Materials and Methods for Examples 1-8 Purification of FGF19, FGF21, FGF23, FGFR, Klotho and βKlotho Proteins and Purification/Synthesis of FGF21 and

FGF23 Peptides

Human FGF19 (R23 to K216, referred to as FGF19²³⁻²¹⁶), human FGF21 (H29 to S209, referred to as FGF21²⁹⁻²⁰⁹), human FGF23 (A28 to I251, referred to as FGF23²⁸⁻²⁵¹; FIG. 1A) and C-terminally truncated FGF23 proteins (A28 to T200, referred to as FGF23²⁸⁻²⁰⁰; A28 to R179, referred to as FGF23²⁸⁻¹⁷⁹; FIG. 1A) were expressed in E. coli, refolded in vitro, and purified by published protocols (Ibrahimi et al., "Biochemical Analysis of Pathogenic Ligand-dependent FGFR2 Mutations Suggests Distinct Pathophysiological Mechanisms for Craniofacial and Limb Abnormalities," Hum Mol Genet 13(19):2313-2324 (2004), Plotnikov et al., "Crystal Structures of Two FGF-FGFR Complexes Reveal the Determinants of Ligand-receptor Specificity," Cell 101(4): 413-424 (2000), which are hereby incorporated by reference in their entirety). In order to minimize proteolysis of FGF23²⁸⁻²⁵¹ and FGF23²⁸⁻²⁰⁰, arginine residues 176 and 179 of the proteolytic cleavage site ¹⁷⁶RXXR¹⁷⁹ (SEQ ID NO: 1) were replaced with glutamine as it occurs in ADHR (Anonymous, "Autosomal Dominant Hypophosphataemic Rickets is Associated with Mutations in FGF23," Nat Genet 26(3):345-348 (2000); White et al., "Autosomal-dominant Hypophosphatemic Rickets (ADHR) Mutations Stabilize FGF-23," Kidney Int 60(6):2079-2086 (2001), which are hereby incorporated by reference in their entirety). The bacterially expressed FGF23²⁸⁻²⁵¹ protein exhibited similar bioactivity as full-length FGF23 produced using a mammalian expression system, as judged by similar ability of the two protein preparations to induce tyrosine phosphorylation of FRS2a and downstream activation of MAP kinase cascade in a HEK293 cell line ectopically expressing the membrane-spanning form of murine Klotho (Kurosu et al., "Regulation of fibroblast growth factor-23 signaling by klotho," J Biol Chem 281(10):6120-6123 (2006), which is hereby incorporated by

reference in its entirety). Human fibroblast growth factor

homologous factor 1B (FHF1B) was purified by a published protocol (Olsen et al., "Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs," J Biol Chem 278(36):34226-34236 (2003), which is hereby incorporated by reference in its entirety). Purified human FGF2 (M1 to S155) was obtained from Upstate Biotechnology. The ligand-binding domain of human FGFR1c (D142 to R365) was expressed in E. coli and purified by published protocols (Anonymous, "Autosomal Dominant Hypophosphataemic Rickets is Associated with 10 Mutations in FGF23," Nat Genet 26(3):345-348 (2000); White et al., "Autosomal-dominant Hypophosphatemic Rickets (ADHR) Mutations Stabilize FGF-23," Kidney Int 60(6): 2079-2086 (2001), which are hereby incorporated by reference in their entirety). The ectodomain of murine Klotho 15 (A35 to K982) was purified from culture media of a HEK293 cell line ectopically expressing the Klotho ectodomain as a fusion protein with a C-terminal FLAG tag (Kurosu et al., "Regulation of fibroblast growth factor-23 signaling by klotho," J Biol Chem 281(10):6120-6123 (2006); Kurosu et 20 al., "Suppression of aging in mice by the hormone Klotho," Science 309(5742):1829-1833 (2005), which are hereby incorporated by reference in their entirety). Similarly, the ectodomain of murine βKlotho (F53 to L995) was expressed in HEK293 cells as a fusion protein with a C-terminal FLAG 25 tag and purified using the same protocol as for the Klotho ectodomain. Purified bovine β-glucuronidase was obtained from Sigma-Aldrich.

The N-terminally hexahistidine-tagged, 72-amino acid C-terminal tail of human FGF23 (S180 to 1251, referred to as 30 FGF23¹⁸⁰⁻²⁵¹; FIG. 1A) was expressed in *E. coli*, and purified by nickel affinity-, ion-exchange- and size-exclusion chromatographies. A shorter peptide of the FGF23 C-terminal region (S180 to S205, referred to as FGF23¹⁸⁰⁻²⁰⁵; FIG. 1A) was synthesized by solid phase synthesis (GenScript Corporation). The N-terminally hexahistidine-tagged, 42-amino acid long C-terminal tail of FGF21 (P168 to S209, referred to as FGF21¹⁶⁸⁻²⁰⁹) was expressed in *E. coli*, and purified by nickel affinity- and ion-exchange chromatographies.

Analysis of FGF23-FGFR1c-Klotho Interactions by Surface 40

Plasmon Resonance Spectroscopy

Surface plasmon resonance (SPR) spectroscopy experiments were performed on a Biacore 2000 instrument (Biacore AB), and FGF23-FGFR1c-Klotho interactions were studied at 25° C. in HBS-EP buffer (10 mM HEPES-NaOH, pH 7.4, 45 150 mM NaCl, 3 mM EDTA, 0.005% (v/v) polysorbate 20). Proteins were immobilized by amine coupling on flow channels of research grade CMS chips (Biacore AB). Proteins were injected over a CMS chip at a flow rate of 50 μl min⁻¹, and at the end of each protein injection (180 s), HBS-EP 50 buffer (50 μl min⁻¹) was flowed over the chip to monitor dissociation for 180 s. The chip surface was then regenerated by injecting 50 µl of 2.0 M NaCl in 10 mM sodium acetate, pH 4.5. To control for nonspecific binding in experiments where Klotho ectodomain was immobilized on the chip, β-glucu- 55 ronidase was coupled to the control flow channel of the chip (~26-32 fmole/mm²) Like Klotho, β-glucuronidase is a member of family 1 glycosidases, and hence structurally related to each of the two extracellular glycosidase-like domains of Klotho. In experiments where FGF19, FGF21, FGF23 or the 60 C-terminal tail of FGF23 were immobilized on the chip, FHF1B, which shares structural similarity with FGFs but does not exhibit any FGFR binding (Olsen et al., "Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs," J Biol Chem 278(36): 34226-34236 (2003), which is hereby incorporated by reference in its entirety), was coupled to the control flow channel

36

of the chip (~14-71 fmole/mm²) The data were processed with BiaEvaluation software (Biacore AB). For each protein injection over a Klotho chip, the nonspecific responses from the β -glucuronidase control flow channel were subtracted from the responses recorded for the Klotho flow channel. Similarly, for each protein injection over a FGF chip, the nonspecific responses from the FHF1B control flow channel were subtracted from the responses recorded for the FGF flow channel. Each set of experiments was repeated at least three times, and for each experiment, at least two protein injections were repeated two to five times to monitor chip performance and to verify reproducibility of the binding responses.

To analyze Klotho binding to FGFR1c, Klotho ectodomain was immobilized on a chip (~29-35 fmole/mm² of flow channel). Increasing concentrations of FGFR1c ectodomain in HBS-EP buffer were injected over the chip. Maximal equilibrium responses were plotted against the concentrations of FGFR1c ectodomain (FIG. 1B), and from the fitted saturation binding curve the equilibrium dissociation constant (K_D) was calculated. The fitted binding curve was judged to be accurate based on the distribution of the residuals (even and near zero) and χ^2 (<10% of R_{max}).

To analyze FGF23 binding to both Klotho and FGFR1c alone, and to the binary FGFR1c-Klotho complex, FGF23²⁸⁻²⁵¹ was coupled to a chip (~16-53 fmole/mm² of flow channel). To measure FGF23 binding to Klotho, increasing concentrations of Klotho ectodomain in HBS-EP buffer were passed over the chip. To analyze FGF23 interaction with FGFR1c, increasing concentrations of FGFR1c ectodomain in HBS-EP buffer were injected over the chip. To measure FGF23 binding to the binary FGFR1c-Klotho complex, increasing concentrations of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer were passed over the FGF23 chip.

To analyze binding of the C-terminal tail of FGF23 to the binary FGFR1c-Klotho complex, FGF23¹⁸⁰⁻²⁵¹ was immobilized on a chip (~48 fmole/mm² of flow channel), and increasing concentrations of 1:1 complex of the ectodomains of FGFR1c and Klotho in HBS-EP buffer were passed over the chip.

To examine whether the C-terminal tail of FGF23 can compete with full-length FGF23 for binding to the binary FGFR1c-Klotho complex, two assay formats were employed. In one assay, FGF23²⁸⁻²⁵¹ was immobilized on a chip (~16-53 fmole/mm² of flow channel). Increasing concentrations of FGF23¹⁸⁰⁻²⁵¹ (0-400 nM) were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho (10 nM, 15 nM and 20 nM, respectively) in HBS-EP buffer, and the mixtures were passed over the chip. As a control, competition of FGF23 in solution with immobilized FGF23 for binding to the binary FGFR1c-Klotho complex was studied. Increasing concentrations of FGF23²⁸⁻²⁵¹ (0-50 nM) were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho (15 nM and 20 nM, respectively) in HBS-EP buffer, and the mixtures were passed over the FGF23 chip. In the other—reverse—assay, FGF23¹⁸⁰⁻²⁵¹ was immobilized on a chip (~48.4 fmole/mm² of flow channel). Increasing concentrations of FGF23²⁸⁻²⁵¹ (0-50 nM) were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho (20 nM) in HBS-EP buffer, and the mixtures were passed over the chip. As a control, competition of FGF23 C-terminal tail peptide in solution with immobilized FGF23 C-terminal tail peptide for binding to the binary FGFR1c-Klotho complex was studied. Increasing concentrations of FGF23¹⁸⁰⁻²⁵¹ (0-400 nM) were mixed with a fixed concentration of 1:1

complex of the ectodomains of FGFR1c and Klotho (20 nM) in HBS-EP buffer, and the mixtures were passed over the FGF23¹⁸⁰⁻²⁵¹ chip.

To examine whether a C-terminal FGF23 peptide comprising the minimal binding epitope for the binary FGFR-Klotho 5 complex can compete with full-length FGF23 for binding to FGFR1c-Klotho, increasing concentrations of FGF23¹⁸⁰⁻²⁰⁵ (0-800 nM) were mixed with a fixed concentration of 1:1 complex of the ectodomains of FGFR1c and Klotho (15 nM and 20 nM, respectively) in HBS-EP buffer, and the mixtures were passed over a chip onto which FGF23²⁸⁻²⁵¹ had been immobilized (~16 fmole/mm² of flow channel).

To examine whether the C-terminal tail of FGF21 can compete with full-length FGF23 for binding to binding to the binary FGFR1c-Klotho complex, FGF23²⁸⁻²⁵¹ was immobilized on a chip (~16 fmole/mm² of flow channel). FGF21¹⁶⁸⁻²⁰⁹ was mixed with the 1:1 complex of the ectodomains of FGFR1c and Klotho at molar ratios of 6:1 and 10:1, and the mixtures were passed over the chip.

To examine whether the C-terminal tail peptide of FGF23 20 interferes with binary complex formation between β Klotho and either FGF19 or FGF21, FGF19²³⁻²¹⁶ and FGF21²⁹⁻²⁰⁹ were immobilized on two flow channels of a chip (~29 fmole/ mm² of flow channel). FGF23¹⁸⁰⁻²⁵¹ and the ectodomain of β Klotho were mixed at a molar ratio of 2:1, and the mixture 25 was injected over the chip.

To examine whether the C-terminal tail peptide of FGF23 interferes with ternary complex formation between β Klotho, FGFR, and either FGF19 or FGF21, FGF23¹⁸⁰⁻²⁵¹ and the 1:1 complex of the ectodomains of FGFR1c and β Klotho were 30 mixed at a molar ratio of 10:1, and the mixture was passed over a chip onto which FGF19²³⁻²¹⁶ and FGF21²⁹⁻²⁰⁹ had been immobilized (~29 fmole/mm² of flow channel). Analysis of FGF23 Protein/Peptide Binding to FGFR1c-

Analysis of FGF23 Protein/Peptide Binding to FGFR1c Klotho Complex by Size-Exclusion Chromatography

Size-exclusion chromatography experiments were performed on a HiLoadTM 16/60 SuperdexTM 200 prep grade column (GE Healthcare) mounted on an ÄKTApurifier (GE Healthcare). Because of poor solubility of FGF23 proteins and FGFR1c ectodomain in low salt buffer, the experiments 40 were carried out with 25 mM HEPES-NaOH buffer, pH7.5, containing 1.0 M NaCl. Sample injection volume was 0.3 to 1.0 ml, and the flow rate was 1.0 ml min⁻¹. Protein retention times were determined by absorbance at 280 nm. The column was calibrated with ferritin (440 kDa), immunoglobulin G 45 (150 kDa), albumin (69.3 kDa), ovalbumin (44.3 kDa), and carbonic anhydrase (28.8 kDa). The void volume was determined using blue dextran 2,000. To examine binding of FGF23 proteins to the 1:1 binary complex of the ectodomains of FGFR1c and Klotho, 1.0 to 3.0 µmol of FGFR1c-Klotho 50 complex were mixed with a 3- to 5-fold molar excess of either FGF23²⁸⁻²⁵¹ or FGF23²⁸⁻¹⁷⁹ or FGF23¹⁸⁰⁻²⁵¹, and the mixtures were applied to the size-exclusion column. The retention time of the FGFR1c-Klotho complex alone served as a reference point. Proteins of column peak fractions were 55 resolved on 14% SDS-polyacrylamide gels, and then stained with Coomassie Brilliant Blue R-250.

Cell Culture-Pull-Down Assays of FGF23 Protein/Peptide Binding to FGFR-Klotho Complex

Subconfluent cultures of a HEK293 cell line ectopically 60 expressing the FLAG-tagged membrane-spanning form of murine Klotho (HEK293-Klotho; Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," *J Biol Chem* 281(10):6120-6123 (2006), which is hereby incorporated by reference in its entirety), were harvested and lysed 65 (Goetz et al., "Molecular Insights into the Klotho-dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19

38

Subfamily Members," *Mol Cell Biol* 27(9):3417-3428 (2007), which is hereby incorporated by reference in its entirety). Cell lysate was incubated with 2.7 nmoles of FGF23²⁸⁻²⁵¹, FGF23²⁸⁻²⁰⁰, FGF23²⁸⁻¹⁷⁹, FGF23¹⁸⁰⁻²⁵¹, or protein sample buffer, and binary complexes of Klotho and endogenous FGFR were isolated from cell lysate using anti-FLAG M2 agarose beads (Sigma-Aldrich) (Goetz et al., "Molecular Insights into the Klotho-dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members," *Mol Cell Biol* 27 (9):3417-3428 (2007), which is hereby incorporated by reference in its entirety). Bead-bound proteins were resolved together with controls (130 to 250 ng of each FGF23 protein) on 14% SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and labeled using horseradish peroxidase-conjugated India-HisProbe (Pierce).

In parallel, subconfluent HEK293-Klotho cells (Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J Biol Chem 281(10):6120-6123 (2006), which is hereby incorporated by reference in its entirety) were transfected with expression vectors for V5-tagged FGFR1c. FGFR3c, or FGFR4 (Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J Biol Chem 281 (10):6120-6123 (2006), which is hereby incorporated by reference in its entirety) and binding of FGF23 proteins/peptides to Klotho-FGFR complexes isolated from cell lysate was analyzed. Two days later, the cells were lysed (Kurosu et al, "Suppression of Aging in Mice by the Hormone Klotho," Science 309(5742):1829-1833 (2005), which is hereby incorporated by reference in its entirety), and FGFR-Klotho complexes were isolated from cell lysate using anti-V5 agarose beads (Sigma-Aldrich) (Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J Biol Chem 281(10):6120-6123 (2006), which is hereby incorporated by reference in its entirety). The beads were then incubated with 35 either FGF23¹⁸⁰⁻²⁵¹ (1 nM) or FGF23²⁸⁻²⁵¹ (1 nM) alone, or with mixtures of FGF23²⁸⁻²⁵¹ (1 nM) with either increasing FGF23¹⁸⁰⁻²⁵¹ (2 to 76 nM) or increasing FGF23¹⁸⁰⁻²⁰⁵ (0.1 to 10 μM). Bead-bound proteins were resolved on SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and labeled using antibodies to Klotho (KM2119, (Kato et al., "Establishment of the Anti-Klotho Monoclonal Antibodies and Detection of Klotho Protein in Kidneys," Biochemical Biophysical Res Communications 267(2):597-602 (2000), which is hereby incorporated by reference in its entirety)), FGF23 (R&D systems), and V5 epitope tag (Invitrogen). Analysis of Phosphorylation of FRS2α and 44/42 MAP Kinase in Epithelial Cell Lines

Subconfluent HEK293-Klotho cells (Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J Biol Chem 281(10):6120-6123 (2006), which is hereby incorporated by reference in its entirety) were serum starved for 16 h and then stimulated for 10 min with either FGF23²⁸-251 (0.33 to 10 nM) or FGF23¹⁸⁰⁻²⁵¹ (0.76 to 76.3 nM). In parallel experiments, cells were stimulated with FGF23²⁸⁻²⁵¹ (1 nM) alone or with FGF23²⁸⁻²⁵¹ (1 nM) mixed with increasing concentrations of either FGF23¹⁸⁰⁻²⁵¹ (0.76 to 76.3 nM) or FGF23 $^{180-205}$ (0.1 to 10 μ M). Cell stimulation with FGF2 (2.9 nM) alone or FGF2 (2.9 nM) mixed with increasing concentrations of FGF23¹⁸⁰⁻²⁵¹ (0.76 to 76.3 nM) served as controls. Similarly, subconfluent cells of a CHO cell line stably expressing Klotho (Imura et al., "Secreted Klotho Protein in Sera and CSF: Implication for Post-translational Cleavage in Release of Klotho Protein from Cell Membrane," FEBS Lett 565(1-3):143-147 (2004), which is hereby incorporated by reference in its entirety) were treated with either FGF23²⁸⁻²⁵¹ (0.067 to 20 nM) or FGF23²⁸⁻²⁰⁰ (0.04 to 12 nM).

In a separate experiment, the biological activity of the bacterially expressed FGF23²⁸⁻²⁵¹ protein was compared to that of FGF23²⁵⁻²⁵¹ expressed in the mouse myeloma cell line NS0 (R&D Systems). Subconfluent HEK293-Klotho cells were serum starved, and then treated with either of the two 5 FGF23 proteins.

After stimulation, the cells were lysed (Kurosu et al, "Suppression of Aging in Mice by the Hormone Klotho," *Science* 309(5742):1829-1833 (2005), which is hereby incorporated by reference in its entirety), and cellular proteins were 10 resolved on SDS-polyacrylamide gels, transferred to nitrocellulose membranes, and the protein blots were probed with antibodies to phosphorylated FGF receptor substrate-2α (FRS2α), phosphorylated 44/42 MAP kinase and non-phosphorylated 44/42 MAP kinase, and Klotho. Except for the 15 anti-Klotho antibody (Kato et al., "Establishment of the Anti-Klotho Monoclonal Antibodies and Detection of Klotho Protein in Kidneys," *Biochemical Biophysical Res Communications* 267(2):597-602 (2000), which is hereby incorporated by reference in its entirety), all antibodies were from Cell 20 Signaling Technology.

Measurement of Phosphate Uptake by Opossum Kidney Cells

The effects of FGF23 proteins/peptides on sodiumcoupled phosphate uptake were studied in the opossum kid- 25 ney cell line OKP (Miyauchi et al., "Stimulation of transient elevations in cytosolic Ca2+ is related to inhibition of Pi transport in OK cells," Am J Physiol 259(3 Pt 2):F485-493 (1990), which is hereby incorporated by reference in its entirety). The cell line has many characteristics of renal proxi-30 mal tubule epithelium, including sodium gradient-dependent phosphate transport and sensitivity to parathyroid hormone (Miyauchi et al., "Stimulation of transient elevations in cytosolic Ca2+ is related to inhibition of Pi transport in OK cells," Am J Physiol 259(3 Pt 2):F485-493 (1990), which is hereby 35 incorporated by reference in its entirety). OKP cells also express FGFR1-4 and Klotho (see next methods section). OKP cells were grown in culture as described previously (Hu et al., "Dopamine Acutely Stimulates Na+/H+ Exchanger (NHE3) Endocytosis Via Clathrin-coated Vesicles: Depen- 40 dence on Protein Kinase A-mediated NHE3 Phosphorylation," J Biol Chem 276(29):26906-26915 (2001), which is hereby incorporated by reference in its entirety). Cells grown in 24-well plates were stimulated for 4 h with FGF23²⁸⁻²⁵¹ (0.5 to 1 nM), FGF23¹⁸⁰⁻²⁵¹ (500 nM), FGF23¹⁸⁰⁻²⁰⁵ (500 45 nM), or mixtures of FGF23²⁸⁻²⁵¹ (1 nM) with either FGF23¹⁸⁰⁻²⁵¹ (1 to 500 nM) or FGF23¹⁸⁰⁻²⁰⁵ (1 to 500 nM). The 1 nM concentration of FGF23²⁸⁻²⁵¹ was chosen for competition experiments with FGF23 C-terminal peptides because at this concentration, half-maximum inhibition of 50 phosphate uptake is reached. After stimulation, the cells were rinsed with Na⁺-free solution followed by 5 min incubation with uptake solution containing 100 μM KH₂³²PO₄ (2 mCi/ ml, Perkin Elmer). The reaction was stopped by aspiration of uptake solution and washing cells with ice-cold stop solution 55 (10 mM HEPES pH 7.4, 140 mM NaCl, 1 mM MgCl₂). Each transport reaction was performed in triplicates.

Analysis of FGFR and Klotho mRNA Expression in Opossum Kidney Cells

Total RNA was extracted from the OKP cell line (Miyauchi 60 et al., "Stimulation of transient elevations in cytosolic Ca2+ is related to inhibition of Pi transport in OK cells," $Am\ J\ Physiol\ 259(3\ Pt\ 2)$:F485-493 (1990), which is hereby incorporated by reference in its entirety) using RNeasy kit (Qiagen). 5 µg of total RNA was used for cDNA synthesis with random 65 hexamer primers using SuperScript III First Strand Synthesis System (Invitrogen). FGFR1-4, Klotho, and β -actin transients

40

scripts were detected by PCR using Platinum Taq DNA Polymerase (Invitrogen). The PCR conditions were 94° C. for 1 min followed by 35 cycles of 95° C. for 30 s, 54° C. for 30 s, and 72° C. for 60 s. The primers used were 5'-TGATTTG-CATTCTCCACCAA-3' (SEQ ID NO: 13) and 5'-CTTCTC-CCCGCTTTTCTTCT-3' (SEO ID NO: 14) (FGFR1); 5'-TATGGGCCAGATGGATTACC-3' (SEO ID NO: 15) and 5'-GCACGTATACTCCCCAGCAT-3' (SEQ ID NO: 16) (FGFR2); 5'-ACCTGGTGTCCTGTGCCTAC-3' (SEQ ID NO: 17) and 5'-CATTCGATGGCCCTCTTTTA-3' (SEQ ID NO: 18) (FGFR3); 5'-CTGAAGCACATCGAGGTCAA-3' (SEQ ID NO: 19) and 5'-CCTGACTCCAGGGAGAACTG-3' (SEQ ID NO: 20) (FGFR4); 5'-AGCCCTCGAAAGAT-GACTGA-3' (SEQ ID NO: 21) and 5'-ACAAACCAGCCAT-TCTCCAC-3' (SEQ ID NO: 22) (Klotho); and 5'-GTGGGGGATGAGGCCCAGAG-3' (SEQ ID NO: 23) and 5'-AGCTGTGGTGGTGAAACTGT-3' (SEQ ID NO: 24) (β-actin). PCR products were resolved on 2% agarose gels containing ethidium bromide.

Measurement of Phosphate in Serum and Urine of Rodents

The phosphaturic activity of FGF23²⁸⁻²⁰⁰ was examined in ~6-week old C57BL/6 mice by a published protocol (Goetz et al., "Molecular Insights into the Klotho-dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members," *Mol Cell Biol* 27 (9):3417-3428 (2007), which is hereby incorporated by reference in its entirety). FGF23²⁸⁻²⁵¹, FGF23²⁸⁻²⁰⁰, or vehicle were injected IP into the animals. Each mouse received two injections at 8 h intervals, of 5 μ g of protein per injection. Before the first injection and 8 h after the second injection, blood was drawn by cheekpouch bleeding and spun at 3,000×g for 10 min to obtain serum. Serum phosphate levels were determined using Phosphorus Liqui-UV reagent (Stanbio Laboratory).

The anti-phosphaturic activity of FGF23 C-terminal peptides was examined in normal Sprague-Dawley rats and in Hyp mice, a mouse model of human X-linked hypophosphatemia (XLH) (Beck et al., "Pex/PEX Tissue Distribution and Evidence for a Deletion in the 3' Region of the Pex Gene in X-linked Hypophosphatemic Mice," J Clin Invest 99(6): 1200-1209 (1997), Eicher et al., "Hypophosphatemia: Mouse Model for Human Familial Hypophosphatemic (Vitamin D-resistant) Rickets," Proc Natl Acad Sci USA 73(12):4667-4671 (1996), Strom et al., "Pex Gene Deletions in Gy and Hyp Mice Provide Mouse Models for X-linked Hypophosphatemia," Hum Mol Genet 6(2):165-171 (1997), which are hereby incorporated by reference in their entirety). The animals were fed a complete, fixed formula diet containing 0.94% phosphate. Anesthetized rats (220-250 g body weight) were administered IV either FGF23²⁸⁻²⁵¹ (0.1 µg kg body weight⁻¹) or FGF23¹⁸⁰⁻²⁵¹ (0.1 μg kg body weight⁻¹) or vehicle. Before and 3 h after the injection, blood was drawn from the carotid artery and urine was collected through bladder catheterization. Plasma and urine chemistry of animals were analyzed using Vitros Chemistry Analyzer (Ortho-Clinical Diagnosis). 10- to 15-week old Hyp mice were fasted for 8-12 h before administering IP either FGF23¹⁸⁰⁻²⁵¹ (1 mg) or FGF23 $^{180\text{-}205}$ (860 μg) or vehicle. Before and 2 h, 4 h, 8 h, and 24 h after the injection, urine and serum samples were collected. Phosphate concentrations in urine and serum were determined using Phosphorus Liqui-UV Test (Stanbio Laboratory), and urine creatinine levels were measured using DetectXTM Urinary Creatinine Detection Kit (LuminosAs-

Analysis of NaP_r-2A and NaP_r-2C Protein Abundance in the Apical Brush Border Membrane of Renal Proximal Tubule Epithelium

Immunoblot analysis of NaP_i-2A and NaP_i-2C protein abundance in renal cortex tissue and isolated brush border 5 membrane vesicles (BBMV), and NaP_i-2A immunostaining of renal tissue were performed as described (Bacic et al., "Activation of Dopamine D1-like Receptors Induces Acute Internalization of the Renal Na⁺/phosphate Cotransporter NaPi-IIa in Mouse Kidney and OK cells," Am J Physiol Renal 10 Physiol 288(4):F740-747 (2005), Loffing et al., "Renal Na/H Exchanger NHE-3 and Na—PO₄ Cotransporter NaP_i-2 Protein Expression in Glucocorticoid Excess and Deficient States," J Am Soc Nephrol 9(9):1560-1567 (1998), Moe et al., "Dietary NaCl Modulates Na(+)-H+ Antiporter Activity in 15 Renal Cortical Apical Membrane Vesicles," Am J Physiol 260(1 Pt 2):F130-137 (1991), which are hereby incorporated by reference in their entirety).

For immunoblot, rat kidney cortices were dissected and homogenized, and BBMV were isolated (Loffing et al., 20 "Renal Na/H Exchanger NHE-3 and Na—PO₄ Cotransporter NaP,-2 Protein Expression in Glucocorticoid Excess and Deficient States," J Am Soc Nephrol 9(9):1560-1567 (1998), Moe et al., "Dietary NaCl Modulates Na(+)-H+ Antiporter Activity in Renal Cortical Apical Membrane Vesicles. Am J 25 Physiol 260(1 Pt 2):F130-137 (1991), which are hereby incorporated by reference in their entirety). 30 µg of cortical/ BBMV protein was solubilized in Laemmli sample buffer, fractionated by SDS-PAGE, transferred to PVDF membrane and labeled using polyclonal rabbit antibody for NaP,-2A or 30 -2C (kind gift from Drs. J. Biber and H. Murer, University of Zürich, Switzerland) (1:3,000 dilution) and monoclonal mouse antibody for β -actin (1:5,000 dilution). For immunohistochemistry, rat kidneys were fixed in situ with perfusion of 2.5% paraformaldehyde via distal aorta of renal arteries 35 before nephrectomy. In some experiments, kidneys were harvested and directly frozen in Tissue TeK® OCT using liquid nitrogen, and cryosections (4 µm) were prepared and processed for immunofluorescent staining (Bacic et al., "Activation of Dopamine D1-like Receptors Induces Acute Internal- 40 ization of the Renal Na⁺/phosphate Cotransporter NaPi-IIa in Mouse Kidney and OK cells," Am J Physiol Renal Physiol 288(4):F740-747 (2005), which is hereby incorporated by reference in its entirety). Sections were incubated with polyclonal rabbit antibody for NaP_i-2A (1:300 dilution; kind gift 45 from Dr. J. Biber) followed by secondary antibodies conjugated to rhodamine (Molecular Probes). For NaP_i-2A/β-actin double staining, the sections were then incubated with fluorescein isothiocyanate-phalloidin (1:50) (Molecular Probes) to stain β -actin filaments. Sections were visualized with a 50 Zeiss LSM510 microscope.

Statistical Analysis

Data are expressed as the mean±SE (n≥6 or more). Statistical analysis was performed using Student's unpaired or paired t-test, or using analysis of variance (ANOVA) when 55 applicable. A value of P≤0.05 was considered as statistically significant.

Example 1

C-Terminal Tail of FGF23 Mediates Binding of FGF23 to a De Novo Site at the Composite FGFR1c-Klotho Interface

To understand how FGF23, FGFR and Klotho interact to 65 form a ternary complex, the ternary complex was reconstituted in solution using bioactive, full-length FGF23

42

(FGF23²⁸⁻²⁵¹; FIG. 1A), and the soluble ectodomains of FGFR1c and Klotho. The binary complex of FGFR1c ectodomain with Klotho ectodomain was formed by capturing the Klotho ectodomain onto an FGFR1c affinity column from conditioned media of a HEK293 cell line ectopically expressing the Klotho ectodomain (Kurosu et al., "Regulation of Fibroblast Growth Factor-23 Signaling by Klotho," J Biol Chem 281(10):6120-6123 (2006), which is hereby incorporated by reference in its entirety). The FGFR1c-Klotho complex was further purified by size-exclusion chromatography to remove excess FGFR1c (FIG. 1B). Next, the FGFR1c-Klotho complex was mixed with FGF23²⁸⁻²⁵¹, and ternary complex formation was examined by size-exclusion chromatography. As shown in FIG. 1C, FGF23 co-eluted with the FGFR1c-Klotho complex demonstrating ectodomains of FGFR1c and Klotho are sufficient to form a stable ternary complex with FGF23.

The size-exclusion data showing that Klotho and FGFR1c ectodomains form a stable binary complex (FIG. 1B) indicate that Klotho must harbor a high affinity binding site for FGFR1c. To further confirm this, surface plasmon resonance (SPR) spectroscopy was used to determine the dissociation constant of the FGFR1c-Klotho interaction. Klotho ectodomain was immobilized on a biosensor chip, and increasing concentrations FGFR1c ectodomain were passed over the chip. Consistent with the results obtained using sizeexclusion chromatography (FIG. 1B), Klotho bound FGFR1c with high affinity ($K_D=72$ nM; FIG. 1D). Because Klotho harbors a high affinity binding site for FGFR1c, it was reasoned that Klotho might also possess a distinct high affinity binding site for FGF23, and promote FGF23-FGFR1c binding by engaging FGF23 and FGFR1c simultaneously. To test this, FGF23²⁸⁻²⁵¹ was coupled to a biosensor chip, and increasing concentrations of Klotho ectodomain were passed over the chip. As shown in FIG. 1F, Klotho bound poorly to FGF23²⁸⁻²⁵¹. These data demonstrate that the Klotho ectodomain contains a high affinity binding site for FGFR1c but not for FGF23.

Next, binding of FGF23 to FGFR1c was measured by injecting increasing concentrations of FGFR1c over the FGF23 chip. As shown in FIG. 1G, FGF23²⁸⁻²⁵¹ exhibited poor binding to FGFR1c. Thus, the SPR data show that FGF23 exhibits poor binding affinity for both the Klotho ectodomain alone and the FGFR1c ectodomain alone. Together with the size-exclusion chromatography data showing that FGF23 binds stably to the purified binary FGFR1c-Klotho complex, the data raised the question whether FGF23 binds to a de novo site generated at the composite FGFR1c-Klotho interface. To test this, FGFR1c-Klotho complex was purified as described above, and increasing concentrations of the binary complex were passed over the FGF23 chip. As shown in FIG. 1E, FGF23²⁸⁻²⁵¹ bound to the FGFR1c-Klotho complex demonstrating that FGF23 interacts with a de novo site generated at the composite FGFR1c-Klotho interface.

It was then examined whether the C-terminal tail of FGF23 mediates binding of FGF23 to the FGFR1c-Klotho complex. To test this, the C-terminal tail peptide of FGF23 (FGF23¹⁸⁰⁻²⁵¹; FIG. 1A) was coupled to a biosensor chip and increasing concentrations of FGFR1c-Klotho complex were passed over the chip. As shown in FIG. 2A, FGF23¹⁸⁰⁻²⁵¹ avidly bound to the binary complex. Size-exclusion chromatography and communoprecipitation experiments yielded similar results supporting the SPR data (FIGS. 2B, C, and D).

Example 2

C-Terminal Tail of FGF23 Competes with Full-Length FGF23 for Binding to the Binary FGFR-Klotho Complex

To fully nail down that the C-terminal tail of FGF23 mediates FGF23 binding to the binary FGFR1c-Klotho complex, a fixed concentration of FGFR1c-Klotho was mixed with increasing concentrations of FGF23¹⁸⁰⁻²⁵¹, and the mixtures ¹⁰ were passed over the FGF23 chip. Mixtures of FGF23²⁸⁻²⁵¹ with FGFR1c-Klotho were used as a control. As shown in FIGS. 3A and D, FGF23¹⁸⁰⁻²⁵¹ competed, in a dose-dependent fashion, with FGF23²⁸⁻²⁵¹ for binding to the FGFR1c-Klotho complex. Half-maximum inhibition of FGFR1c-Klotho binding to FGF23²⁸⁻²⁵¹ was reached with a 3.3-fold molar excess of FGF23¹⁸⁰⁻²⁵¹ over FGFR1c-Klotho complex (FIG. 3D). As expected, less than an equimolar amount of FGF23²⁸⁻²⁵¹ relative to FGFR1c-Klotho complex already yielded 50% inhibition of binding of the binary complex to 20 immobilized FGF23²⁸⁻²⁵¹ (FIGS. 3C and D). Similar results were obtained using the "reverse" SPR assay format, where FGF23¹⁸⁰⁻²⁵¹ was immobilized on a chip and mixtures of a fixed concentration of FGFR1c-Klotho complex with increasing concentrations of FGF23²⁸⁻²⁵¹ were passed over 25 the chip (FIG. 3E). Mixtures of FGF23¹⁸⁰⁻²⁵¹ with FGFR1c-Klotho were used as a control (FIG. 3F). To verify the specificity of the interaction between the FGF23 C-terminal tail and the FGFR1c-Klotho complex, the C-terminal tail peptide of FGF21 and FGFR1c-Klotho were mixed at molar ratios of 6:1 and 10:1, and the mixtures were injected over a FGF23 chip. As shown in FIG. 3G, FGF21¹⁶⁸⁻²⁰⁹ failed to inhibit binding of the FGFR1c-Klotho complex to immobilized FGF23²⁸⁻²⁵¹. In addition, the ability of the FGF23 C-terminal tail peptide to interfere with binary complex formation 35 between βKlotho and either FGF19 or FGF21 was tested, as was its ability to interfere with ternary complex formation between βKlotho, FGFR, and either FGF19 or FGF21. FGF19²³⁻²¹⁶ and FGF21²⁹⁻²⁰⁹ were coupled to a biosensor chip, and a 2:1 mixture of FGF23¹⁸⁰⁻²⁵¹ and βKlotho ⁴⁰ ectodomain was injected over the chip. As shown in FIGS. 4A and B, FGF23 $^{180\mbox{-}251}$ failed to inhibit binding of β Klotho to immobilized FGF19 or FGF21. Likewise, a 10-fold molar excess of FGF23 $^{180\text{-}251}$ over FGFR1c- β Klotho did not affect binding of the FGFR1c-βKlotho complex to immobilized 45 FGF19 or FGF21 (FIGS. 4C and D). A co-immunoprecipitation based competition assay also confirmed that the C-terminal tail peptide of FGF23 can inhibit binding of FGF23 to its binary cognate FGFR-Klotho complex (FIG. 3H). Together, the data unambiguously demonstrate that the C-ter- 50 minal tail of FGF23 harbors the binding site for the binary FGFR-Klotho complex and hence is essential for formation of the ternary FGF23-FGFR-Klotho complex. Importantly, the binding data unveil that proteolytic cleavage at the \$^{176}RXXR^{179} motif (SEQ ID NO:1) abrogates FGF23 activity \$55 by removing the binding site for the binary FGFR-Klotho complex that resides in the C-terminal tail of FGF23.

Example 3

60

Residues S180 to T200 of the C-terminal Tail of FGF23 Comprise the Minimal Binding Epitope for the FGFR-Klotho Complex

In follow-up studies, it was found that FGF23²⁸⁻²⁰⁰, which 65 lacks the last 51 C-terminal amino acids, still retains the ability to co-immunoprecipitate with the binary FGFR-

44

Klotho complex (FIG. 2D). The finding suggested that FGF23²⁸⁻²⁰⁰ may have similar biological activity as the fulllength protein. To test this, the ability of FGF23²⁸⁻²⁰⁰ and FGF23²⁸⁻²⁵¹ to induce tyrosine phosphorylation of FGF receptor substrate 2α (FRS2α) and downstream activation of MAP kinase cascade in Klotho-expressing cultured cells, and to induce phosphaturia in mice, was examined. As shown in FIG. 5A, FGF23²⁸⁻²⁰⁰ induced phosphorylation of FRS2α and downstream activation of MAP kinase cascade at a dose comparable to that of FGF23²⁸⁻²⁵¹. The truncated FGF23 was also nearly as effective as the full-length ligand in reducing serum phosphate concentration in healthy C57BL/6 mice (FIG. 5B). These data show that deletion of the last 51 amino acids from the FGF23 C-terminus has little effect on FGF23 biological activity, narrowing down the epitope on the FGF23 C-terminal tail for the composite FGFR-Klotho interface to residues S180 and T200. Indeed, a FGF23 peptide comprising the minimal binding epitope for FGFR-Klotho (FGF23¹⁸⁰⁻²⁰⁵; FIG. 1A) was able to compete, in a dose-dependent fashion, with FGF23²⁸⁻²⁵¹ for binding to the binary FGFR1c-Klotho complex (FIG. 3B). Half-maximum inhibition of FGFR1c-Klotho binding to FGF23²⁸⁻²⁵¹ was reached with a 5.7-fold molar excess of FGF23¹⁸⁰⁻²⁰⁵ over FGFR1c-Klotho complex (FIG. 3D). Similarly, in a co-immunoprecipitation based competition assay, FGF23¹⁸⁰⁻²⁰⁵ peptide was able to inhibit binding of FGF23 to the binary complexes of its cognate FGFR and Klotho (FIG. 5C). The data also explain the finding by Garringer and colleagues showing that residues P189 to P203 are required for FGF23 signaling (Garringer et al., "Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis," Am J Physiol Endocrinol Metab 295(4):E929-937 (2008), which is hereby incorporated by reference in its entirety).

Example 4

FGF23 C-Terminal Peptides Block FGF23 Signaling

Based on these data, it was postulated that $FGF23^{180-251}$ and $FGF23^{180-205}$ should antagonize FGF23 signaling by competing with full-length FGF23 for binding to the FGFR-Klotho complex. To test this, cells stably overexpressing Klotho were stimulated with $FGF23^{28-251}$ alone or $FGF23^{28-251}$ mixed with increasing concentrations of either $FGF23^{180-251}$ or $FGF23^{180-205}$. As shown in FIGS. 6A and B, both peptides inhibited, in a dose-dependent fashion, $FGF23^{180-205}$ induced tyrosine phosphorylation of $FRS2\alpha$ and downstream activation of MAP kinase cascade.

To test the specificity of the FGF23 antagonists, the ability of the FGF23 $^{180-251}$ peptide to inhibit signaling of FGF2, a prototypical paracrine-acting FGF, which does not require Klotho for signaling was examined. As shown in FIG. **6**C, the FGF23 antagonist failed to inhibit tyrosine phosphorylation of FRS2 α and downstream activation of MAP kinase cascade induced by FGF2. These data show that FGF23 C-terminal peptides specifically block FGF23 signaling.

Example 5

FGF23 C-Terminal Peptides Antagonize the Inhibitory Effect of FGF23 on Sodium-Coupled Phosphate Uptake by Renal Proximal Tubule Epithelial Cells

In renal proximal tubule epithelium, FGF23 signaling leads to inhibition of phosphate uptake. To establish further

that FGF23 C-terminal peptides block FGF23 action, the effects of the peptides on sodium-coupled phosphate uptake in a proximal tubular cell model were studied. As shown in FIG. 7A, FGF23¹⁸⁰⁻²⁵¹ antagonized the inhibition of phosphate uptake by FGF23²⁸⁻²⁵¹ in a dose-dependent fashion, with an IC $_{50}$ of about 21 nM. FGF23¹⁸⁰⁻²⁰⁵ exhibited a similar, albeit less potent antagonistic effect (FIG. 7B). As expected, neither of the two FGF23 C-terminal peptides altered phosphate uptake when applied alone (FIGS. 7A and R)

Example 6

FGF23 C-Terminal Peptides Antagonize Phosphaturic Activity of FGF23 in Healthy Rats

These findings led to in vivo studies and an investigation of whether the FGF23 C-terminal peptides antagonize the phosphaturic effects of endogenous FGF23. An IV injection of FGF23¹⁸⁰⁻²⁵¹ into healthy Sprague-Dawley rats led to renal phosphate retention, and hyperphosphatemia (FIG. 8), suggesting that FGF23 C-terminal peptides antagonize the phosphaturic action of endogenous FGF23. As expected, injection of FGF23²⁸⁻²⁵¹ induced increases in excretion rate and fractional excretion of phosphate, and led to a significant decrease in plasma phosphate compared to vehicle-treated animals (FIG. 8).

FGF23 exerts its phosphaturic activity by inhibiting phosphate uptake by renal proximal tubule epithelium. The effect has been attributed to reduced transport activity of NaP_i-2A and NaP,-2C, reduced amount of NaP,-2A and NaP,-2C proteins in the apical brush border membrane, and at the more 30 chronic level, repression of the NaP,-2A and NaP,-2C genes (Baum et al., "Effect of Fibroblast Growth Factor-23 on Phosphate Transport in Proximal Tubules," Kidney Int 68(3):1148-1153 (2005), Perwad et al., "Fibroblast Growth Factor 23 Impairs Phosphorus and Vitamin D Metabolism In Vivo and 35 25-hydroxyvitamin D-1alpha-hydroxylase Expression In Vitro," Am J Physiol Renal Physiol 293(5): F1577-1583 (2007), Yamashita et al., "Fibroblast Growth Factor (FGF)-23 Inhibits Renal Phosphate Reabsorption by Activation of the Mitogen-activated Protein Kinase Pathway," J Biol Chem 277(31):28265-28270 (2002), Larsson et al., "Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1 (I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis," Endocrinology 145(7):3087-3094 (2004), Segawa et al., "Effect of hydrolysis-resistant FGF23-R179Q 45 on dietary phosphate regulation of the renal type-II Na/Pi transporter," Pflugers Arch 446(5):585-592 (2003), which are hereby incorporated by reference in their entirety). The abundance of NaP_i-2A protein in brush border membrane vesicles isolated from the kidneys of rats was examined An IV injection of FGF23 $^{180\text{-}251}$ into healthy rats led to an increase in NaP_i-2A protein expression in the apical brush border membrane compared to vehicle treatment (FIGS. 9A and B). The peptide exhibited similar effects on the NaP, -2C protein (FIG. 9C). As expected, injection of FGF23²⁸⁻²⁵¹ led to a decrease in NaP_i-2A protein expression (FIGS. 9A and B). These findings establish that FGF23 C-terminal peptides counteract or cancel out FGF23's phosphaturic action mediated through NaP,-2A and NaP,-2C.

Example 7

FGF23 C-terminal Peptides Antagonize Phosphaturic Activity of FGF23 in a Mouse Model of Renal Phosphate Wasting

To evaluate the therapeutic potential of FGF23¹⁸⁰⁻²⁵¹ for treating renal phosphate wasting, the peptide's efficacy in

46

Hyp mice, a mouse model of XLH (Anonymous., "A Gene (PEX) with Homologies to Endopeptidases is Mutated in Patients with X-linked Hypophosphatemic Rickets. The HYP Consortium.," Nat Genet 11(2):130-136 (1995); Beck et al., "Pex/PEX Tissue Distribution and Evidence for a Deletion in the 3' Region of the Pex Gene in X-linked Hypophosphatemic Mice," J Clin Invest 99(6):1200-1209 (1997); Eicher et al., "Hypophosphatemia: Mouse Model for Human Familial Hypophosphatemic (Vitamin D-resistant) Rickets," Proc Natl Acad Sci USA 73(12):4667-4671 (1996); Strom et al., "Pex Gene Deletions in Gy and Hyp Mice Provide Mouse Models for X-linked Hypophosphatemia," Hum Mol Genet 6(2):165-171 (1997), which are hereby incorporated by reference in their entirety) was analyzed. XLH is an inherited phosphate wasting disorder associated with high FGF23, which is thought to be due to reduced clearance of FGF23 from the circulation. Excess FGF23 causes increased phosphate excretion resulting in hypophosphatemia. As shown in FIG. $\bf 10$, an IP injection of FGF23 $^{180-251}$ induced a decrease in renal phosphate excretion in Hyp mice compared to vehicle treatment. The effect persisted for at least four hours post injection. Concomitantly, serum phosphate levels were elevated by the FGF23 antagonist treatment (FIG. 10). Likewise, an IP injection of the FGF23¹⁸⁰⁻²⁰⁵ peptide, which comprises the minimal binding epitope for the composite FGFR-Klotho interface, caused an increase in serum phosphate in Hyp mice compared to vehicle-treated animals (FIG. 10). These results show that FGF23 C-terminal peptides are effective in attenuating renal phosphate wasting caused by excess FGF23.

In the present invention, it was demonstrated that the proteolytic cleavage at the RXXR (SEQ ID NO:1) motif downregulates FGF23 activity by a dual mechanism: by removing FGF23's binding site for the binary FGFR-Klotho complex, and by generating an endogenous inhibitor of FGF23. This regulatory mechanism was exploited to develop a FGF23 antagonist with therapeutic potential for hypophosphatemia associated with elevated or normal FGF23.

Patients with phosphate wasting disorders are generally treated symptomatically, with oral phosphate supplementation and 1,25-dihydroxyvitamin D₃/calcitriol. As alluded to in the background, oral phosphate therapy can be poorly tolerated, and in certain circumstances can induce hyperparathyroidism and poses risk of exacerbation of hypophosphatemia. In patients with XLH, the persistent and even exaggerated renal phosphate wasting during therapy can cause nephrocalcinosis and nephrolithiasis. For patients with renal phosphate wasting from tumor-induced osteomalacia, a causative treatment option exists, which is resection of the tumor producing excess amounts of phosphaturic hormone. These tumors are often difficult to locate, however, or the tumors are found in locations that are difficult to access, leaving most patients with tumor-induced osteomalacia also currently with no options other than symptomatic therapy (van Boekel et al., "Tumor Producing Fibroblast Growth Factor 23 Localized by Two-staged Venous Sampling," Eur J Endocrinol 158(3): 431-437 (2008); Jan de Beur S M., "Tumor-induced Osteomalacia," JAMA 294(10):1260-1267 (2005), which are hereby incorporated by reference in their entirety). Since 60 excess FGF23 is the pathogenic factor in phosphate wasting disorders, blocking its action with FGF23 C-terminal peptides holds promise of providing the first causative pharmacotherapy.

In a mouse model of phosphate wasting disorders, it has been shown that FGF23 C-terminal peptides are effective in counteracting the phosphaturic action of FGF23. The present invention warrants further evaluation of the peptides' efficacy

in nonhuman primates, and eventually, in humans. Neutralizing FGF23 activity with antibody provides an alternative approach for treating renal phosphate wasting. Indeed, Aono, Yamazaki and colleagues have explored this approach, and developed antibodies against FGF23 that effectively neutralize FGF23 activity in both healthy mice and Hyp mice (Yamazaki et al., "Anti-FGF23 Neutralizing Antibodies Show the Physiological Role and Structural Features of FGF23," *J Bone Miner Res* 23(9):1509-1518 (2008), Aono et al., "Therapeutic Effects of Anti-FGF23 Antibodies in Hypophosphatemic Rickets/Osteomalacia," *J Bone Miner Res*, published online May 5th, DOI 10.1359/jmbr.090509 (2009), which are hereby incorporated by reference in their entirety).

While it has been conclusively demonstrated that the phosphaturic activity of FGF23 is Klotho-dependent (Nakatani et 15 al., "Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model," FASEB J 23(11):3702-3711 (2009), which is hereby incorporated by reference in its 20 entirety), the possibility that FGF23 may have some Klothoindependent functions has not yet been ruled out experimentally. In this regard, the present invention of an inhibitory peptide approach may offer a more targeted therapy for hypophosphatemia than anti-FGF23 antibodies as FGF23 C-ter- 25 minal peptides specifically target the binary FGFR-Klotho complex and hence only neutralize Klotho-dependent function of FGF23. In contrast, the antibody approach does not discriminate between Klotho-dependent and -independent functions of FGF23. The FGF23 C-terminal peptides can also 30 serve as an experimental tool to dissect Klotho-dependent and -independent functions of FGF23. The ability of the FGF23 C-terminal peptides to specifically recognize the binary receptor complex makes them a powerful tool to image tissues that express the cognate FGFR-Klotho complexes of 35

Hypophosphatemia complicates a wide variety of conditions such as the refeeding syndrome, diabetic ketoacidosis, asthma exacerbations and chronic obstructive pulmonary disease, and recovery from organ (particularly, kidney) trans- 40 plantation (Gaasbeek et al., "Hypophosphatemia: An Update on its Etiology and Treatment," Am J Med 118(10):1094-1101 (2005); Miller et al., "Hypophosphatemia in the Emergency Department Therapeutics," *Am J Emerg Med* 18(4): 457-461 (2000); Marinella M A., "Refeeding Syndrome and 45 Hypophosphatemia," J Intensive Care Med 20(3):155-159 (2005), which are hereby incorporated by reference in their entirety). Indeed, hypophosphatemia complicating recovery from kidney transplantation, and parenteral iron therapy has been associated with increased plasma levels of FGF23 (Bhan 50 et al., "Post-transplant hypophosphatemia: Tertiary 'Hyper-Phosphatoninism'?" Kidney Int 70(8):1486-1494 (2006), Evenepoel et al., "Tertiary 'Hyperphosphatoninism' accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients," Am J Transplant 7(5):1193-1200 55 (2007), Kawarazaki et al., "Persistent high level of fibroblast growth factor 23 as a cause of post-renal transplant hypophosphatemia," Clin Exp Nephrol 11(3):255-257 (2007), Trombetti et al., "FGF-23 and post-transplant hypophosphatemia: evidence for a causal link," abstract number Su168 presented 60 at the 30th Annual Meeting of the American Society for Bone and Mineral Research (2008), Schouten et al., "FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study," J Clin Endocrinol Metab 94(7): 2332-2337 (2009), Shouten et al., "Iron polymaltose-induced 65 FGF23 elevation complicated by hypophosphataemic osteomalacia," Ann Clin Biochem 46(2):167-169 (2009), Shimizu

48

et al., "Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia," *Bone* 45(4):814-816 (2009), which are hereby incorporated by reference in their entirety). Thus, the FGF23 antagonist discovered in the present invention may be of therapeutic value for a much broader collection of patients than phosphate wasting disorders alone. The ability of FGF23 C-terminal peptides to enhance renal phosphate retention in normal rats ushers in the option of using these peptides therapeutically in hypophosphatemic conditions where FGF23 is not the primary cause of hypophosphatemia, and not down-regulated as a compensatory mechanism.

Another indication for therapy with FGF23 C-terminal peptides, which would target still more patients than disorders complicated by hypophosphatemia, is chronic kidney disease, a condition with a growing incidence, currently affecting nearly 26 million people in the United States alone. Plasma levels of FGF23 increase as kidney function declines in patients with chronic kidney disease (CKD) (Larsson et al., "Circulating Concentration of FGF-23 Increases as Renal Function Declines in Patients with Chronic Kidney Disease, But Does Not Change in Response to Variation in Phosphate Intake in Healthy Volunteers," Kidney Int 64(6):2272-2279 (2003), which is hereby incorporated by reference in its entirety), likely as a compensatory response to enhanced phosphate retention, and top 1000-fold of normal levels in patients with end-stage CKD (Gutierrez et al., "Fibroblast Growth Factor 23 and Mortality Among Patients Undergoing Hemodialysis," N Engl J Med 359(6):584-592 (2008); Jean et al., "High Levels of Serum Fibroblast Growth Factor (FGF)-23 are Associated with Increased Mortality in Long Haemodialysis Patients," Nephrol Dial Transplant 24(9):2792-2796 (2009), which are hereby incorporated by reference in their entirety). The gradual increases in plasma FGF23 correlate with disease progression (Fliser et al., "Fibroblast Growth Factor 23 (FGF23) Predicts Progression of Chronic Kidney Disease: the Mild to Moderate Kidney Disease (MMKD) Study," J Am Soc Nephrol 18(9):2600-2608 (2007); Westerberg et al., "Regulation of Fibroblast Growth Factor-23 in Chronic Kidney Disease," Nephrol Dial Transplant 22(11): 3202-3207 (2007), which are hereby incorporated by reference in their entirety), including suppression of 1,25-vitamin D production and development of secondary hyperparathyroidism (Nakanishi et al., "Serum Fibroblast Growth Factor-23 Levels Predict the Future Refractory Hyperparathyroidism in Dialysis Patients," *Kidney Int* 67(3):1171-1178 (2005); Shigematsu et al., "Possible Involvement of Circulating Fibroblast Growth Factor 23 in the Development of Secondary Hyperparathyroidism Associated with Renal Insufficiency," Am J Kidney Dis 44(2):250-256 (2004), which are hereby incorporated by reference in their entirety). Moreover, increased circulating FGF23 has emerged as an independent risk factor for cardiovascular disease and mortality in CKD (Gutierrez et al., "Fibroblast Growth Factor 23 and Mortality Among Patients Undergoing Hemodialysis," N Engl J Med 359(6):584-592 (2008); Jean et al., "High Levels of Serum Fibroblast Growth Factor (FGF)-23 are Associated with Increased Mortality in Long Haemodialysis Patients," Nephrol Dial Transplant 24(9):2792-2796 (2009); Gutierrez et al., "Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease," Circulation 119(19):2545-2552 (2009); Mirza et al., "Circulating Fibroblast Growth Factor-23 is Associated with Vascular Dysfunction in the Community," Atherosclerosis 205(2):385-390 (2009); Mirza et al., "Serum Intact FGF23 Associate with Left Ventricular Mass, Hypertrophy and Geometry in an Elderly Population," Atherosclerosis 207(2):546-551 (2009); Nasrallah et al.,

"Fibroblast Growth Factor-23 (FGF-23) is Independently Correlated to Aortic Calcification in Haemodialysis Patients," *Nephrol Dial Transplant* 25(8):2679-2685 (2010), which are hereby incorporated by reference in their entirety), suggesting that FGF23 is implicated in the pathogenesis of CKD and 5 its adverse outcomes. Blocking FGF23 action with FGF23 C-terminal peptides may prove effective in preventing or attenuating the occurrence of disease complications such as hyperparathyroidism and vascular calcification. Thus, the FGF23 antagonist of the present invention may be of therapeutic value for a much broader collection of patients than hypophosphatemia due to renal phosphate wasting alone.

The identification of the FGF23 C-terminal tail as a FGF23 antagonist suggests that proteolytic cleavage not only removes the binding site on FGF23 for the FGFR-Klotho 15 complex, but also generates an endogenous FGF23 antagonist. A pathophysiological role of the latter mechanism is indicated by familial tumoral calcinosis (FTC), an autosomal recessive metabolic disorder with clinical manifestations opposing those of phosphate wasting disorders. Missense 20 mutations in either the UDP-N-acetyl- α -D-galactosamine: polypeptide N-acetylglactosaminyltransferase 3 (GALNT3) gene (Garringer et al., "Two Novel GALNT3 Mutations in Familial Tumoral Calcinosis," Am J Med Genet A 143A(20): 2390-2396 (2007); Ichikawa et al., "Tumoral Calcinosis Pre- 25 senting with Eyelid Calcifications Due to Novel Missense Mutations in the Glycosyl Transferase Domain of the GALNT3 Gene," J Clin Endocrinol Metab 91(11):4472-4475 (2006); Topaz et al., "Mutations in GALNT3, Encoding a Protein Involved in O-linked Glycosylation, Cause Familial 30 Tumoral Calcinosis," Nat Genet 36(6):579-581 (2004); Dumitrescu et al., "A Case of Familial Tumoral Calcinosis/ hyperostosis-hyperphosphatemia Syndrome Due to a Compound Heterozygous Mutation in GALNT3 Demonstrating New Phenotypic Features," Osteoporos Int (2008), which are 35 hereby incorporated by reference in their entirety), or the FGF23 gene (Araya et al., "A Novel Mutation in Fibroblast Growth Factor 23 Gene as a Cause of Tumoral Calcinosis," J Clin Endocrinol Metab 90(10):5523-5527 (2005); Chefetz et al., "A Novel Homozygous Missense Mutation in FGF23 40 Causes Familial Tumoral Calcinosis Associated with Disseminated Visceral Calcification," Hum Genet 118(2):261-266 (2005); Larsson et al., "A Novel Recessive Mutation in Fibroblast Growth Factor-23 Causes Familial Tumoral Calcinosis," J Clin Endocrinol Metab 90(4):2424-2427 (2005); 45 Benet-Pages et al., "An FGF23 Missense Mutation Causes Familial Tumoral Calcinosis with Hyperphosphatemia," Hum Mol Genet 14(3):385-390 (2005), which are hereby incorporated by reference in their entirety), have been associated with FTC. All FTC patients have abnormally high 50 plasma levels of the C-terminal proteolytic fragment of FGF23 (Garringer et al., "Two Novel GALNT3 Mutations in Familial Tumoral Calcinosis," Am J Med Genet A 143A(20): 2390-2396 (2007); Ichikawa et al., "Tumoral Calcinosis Presenting with Eyelid Calcifications Due to Novel Missense 55 Mutations in the Glycosyl Transferase Domain of the GALNT3 Gene," J Clin Endocrinol Metab 91(11):4472-4475 (2006); Topaz et al., "Mutations in GALNT3, Encoding a Protein Involved in O-linked Glycosylation, Cause Familial Tumoral Calcinosis," Nat Genet 36(6):579-581 (2004); 60 Dumitrescu et al., "A Case of Familial Tumoral Calcinosis/ hyperostosis-hyperphosphatemia Syndrome Due to a Compound Heterozygous Mutation in GALNT3 Demonstrating New Phenotypic Features," Osteoporos Int (2008); Araya et al., "A Novel Mutation in Fibroblast Growth Factor 23 Gene 65 as a Cause of Tumoral Calcinosis," J Clin Endocrinol Metab 90(10):5523-5527 (2005); Chefetz et al., "A Novel Homozy50

gous Missense Mutation in FGF23 Causes Familial Tumoral Calcinosis Associated with Disseminated Visceral Calcification," *Hum Genet* 118(2):261-266 (2005); Larsson et al., "A Novel Recessive Mutation in Fibroblast Growth Factor-23 Causes Familial Tumoral Calcinosis," *J Clin Endocrinol Metab* 90(4):2424-2427 (2005), which are hereby incorporated by reference in their entirety). The present invention suggests that excess C-terminal FGF23 fragment may aggravate hyperphosphatemia, and the resulting soft tissue calcification, by antagonizing the action of any residual, functional FGF23 ligand in these patients.

There has been a conundrum surrounding the mechanism of action of FGF23 in the kidney because Klotho is expressed in the distal convoluted tubule (Kato et al., "Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys," Biochem Biophys Res Commun 267(2):597-602 (2000), Li et al., "Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice," Cell Struct Funct 29(4):91-99 (2004), Tsujikawa et al., "Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system," Mol Endocrinol 17(12):2393-2403 (2003), which are hereby incorporated by reference in their entirety), whereas FGF23 inhibits phosphate reabsorption in the proximal tubule (Baum et al., "Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules," Kidney Int 68(3):1148-1153 (2005), Perwad et al., "Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro," Am J Physiol Renal Physiol 293(5):F1577-F1583 (2007), Larsson et al., "Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis," Endocrinology 145(7):3087-3094 (2004), which are hereby incorporated by reference in their entirety). A recent study suggested that FGF23 signaling initiates in the distal tubule and its effects are then transmitted to the proximal tubule through an unknown diffusible paracrine factor (Farrow et al., "Initial FGF23-mediated signaling occurs in the distal convoluted tubule," J Am Soc Nephrol 20(5):955-960 (2009), which is hereby incorporated by reference in its entirety). In addition to the membrane-bound isoform of Klotho, alternative splicing and proteolytic cleavage give rise to two soluble isoforms of Klotho found in the circulation (Imura et al., "Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane," FEBS Lett 565(1-3): 143-147 (2004), Kurosu et al., "Suppression of aging in mice by the hormone Klotho," Science 309(5742):1829-1833 (2005), Matsumura et al., "Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein," Biochem Biophys Res Commun 242(3):626-630 (1998), Shiraki-Iida et al., "Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein," FEBS Lett 424(1-2):6-10 (1998), which are hereby incorporated by reference in their entirety). Importantly, the recombinant Klotho ectodomain that was used to reconstitute the ternary FGF23-FGFR-Klotho complex in vitro corresponds to the complete ectodomain of Klotho that is shed into the circulation by a proteolytic cleavage at the juncture between the extracellular domain and transmembrane domain (Imura et al., "Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane," FEBS Lett 565(1-3): 143-147 (2004), Kurosu et al., "Suppression of aging in mice by the hormone Klotho," Science 309(5742):1829-1833

(2005), which are hereby incorporated by reference in their entirety). Thus, the present invention points to the possibility that it is the shed soluble isoform of Klotho that makes its way to the proximal tubule to promote formation of FGF23-FGFR-Klotho ternary complex, and inhibition of phosphate 5 reabsorption.

Example 8

The Isolated C-Terminal Tail of FGF23 Inhibits Renal Phosphate Excretion as an FGF23 Antagonist by Displacing FGF23 from its Receptor

FGF23 is an important phosphaturic hormone. FGF23 fragments were examined for binding to the binary FGFR-15 Klotho complex, FGFR activation, sodium-dependent phosphate transport, and phosphate balance. Based on FGF23 peptides (aa 28-251, 28-179, 28-200, 180-251, and 180-200) binding to the binary FGFR-Klotho complex, the binding region was localized to aa 180-200 which provides the structural platform to design agonists and antagonists. Using FRS2α and 44/42 MAP kinase phosphorylation as readouts for FGFR activation, it was found that FGF23^{28-20°} was an agonist while FGF23¹⁸⁰⁻²⁵¹ had no activity alone but functioned as an antagonist. Its antagonistic action was mediated by competitively displacing FGF23 from its binary cognate FGFR-Klotho complex, and the major region of antagonism was further refined to aa 180-205. Next it was examined if

52

 $FGF23^{180-251}$ is a functional antagonist in vivo. An IV injection of FGF23²⁸⁻²⁵¹ into normal rats induced hypophosphatemia whereas FGF23¹⁸⁰⁻²⁵¹ induced hyperphosphatemia. Excretion rate and fractional excretion of phosphate were increased by FGF23²⁸⁻²⁵¹ but decreased by FGF23¹⁸⁰⁻²⁵¹. FGF23²⁸⁻²⁵¹ diminished the sodium-dependent phosphate transporter proteins NaP,-2A and NaP,-2C in the apical brush border membrane whereas FGF23¹⁸⁰⁻²⁵¹ increased NaP,-2A and NaP,-2C protein expression. To ensure that these are direct effects on epithelia of the renal proximal tubule, phosphate uptake was studied in proximal tubule-like cells. FGF23 C-terminal peptides did not alter phosphate uptake by themselves but they completely reversed the inhibitory effect of FGF23 on phosphate uptake (aa 180-251: half max 21 nM; aa 180-205: half max between 100 nM and 500 nM). In conclusion, the isolated C-terminal tail of FGF23 is an antagonist of FGF23 and induces renal phosphate retention. This can provide the foundation for potential therapeutic interventions of hypophosphatemia where FGF23 is not down-regulated as a compensatory mechanism.

Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.

SEQUENCE LISTING

```
<160> NUMBER OF SEO ID NOS: 24
<210> SEQ ID NO 1
<211> LENGTH: 4
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer
<220> FEATURE:
<221> NAME/KEY: misc feature
<222> LOCATION: (2)..(3)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
<400> SEQUENCE: 1
Arg Xaa Xaa Arg
<210> SEQ ID NO 2
<211> LENGTH: 3018
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 2
cggcaaaaag gagggaatcc agtctaggat cctcacacca gctacttgca agggagaagg
aaaaggccag taaggcctgg gccaggagag tcccgacagg agtgtcaggt ttcaatctca
gcaccagcca ctcagagcag ggcacgatgt tgggggcccg cctcaggctc tgggtctgtg
cettqtqcaq eqtetqcaqe atqaqeqtee teaqaqeeta teccaatqee tecceactqe
                                                                      240
teggetecag etggggtgge etgatecace tgtacacage cacagecagg aacagetace
                                                                      300
acctgcagat ccacaagaat ggccatgtgg atggcgcacc ccatcagacc atctacagtg
                                                                      360
ccctgatgat cagatcagag gatgctggct ttgtggtgat tacaggtgtg atgagcagaa
                                                                      420
gatacctctg catggatttc agaggcaaca tttttggatc acactatttc gacccggaga
```

						-
_	CO	nt	- 1	nı	10	а

actgcaggtt	ccaacaccag	acgctggaaa	acgggtacga	cgtctaccac	teteeteagt	540	
atcacttcct	ggtcagtctg	ggccgggcga	agagagcctt	cctgccaggc	atgaacccac	600	
ccccgtactc	ccagttcctg	tcccggagga	acgagatccc	cctaattcac	ttcaacaccc	660	
ccataccacg	gcggcacacc	cggagcgccg	aggacgactc	ggagcgggac	cccctgaacg	720	
tgctgaagcc	ccgggcccgg	atgaccccgg	ccccggcctc	ctgttcacag	gagctcccga	780	
gcgccgagga	caacagcccg	atggccagtg	acccattagg	ggtggtcagg	ggcggtcgag	840	
tgaacacgca	cgctggggga	acgggcccgg	aaggctgccg	ccccttcgcc	aagttcatct	900	
agggtcgctg	gaagggcacc	ctctttaacc	catccctcag	caaacgcagc	tcttcccaag	960	
gaccaggtcc	cttgacgttc	cgaggatggg	aaaggtgaca	ggggcatgta	tggaatttgc	1020	
tgcttctctg	gggtcccttc	cacaggaggt	cctgtgagaa	ccaacctttg	aggcccaagt	1080	
catggggttt	caccgccttc	ctcactccat	atagaacacc	tttcccaata	ggaaacccca	1140	
acaggtaaac	tagaaatttc	cccttcatga	aggtagagag	aaggggtctc	tcccaacata	1200	
tttctcttcc	ttgtgcctct	cctctttatc	acttttaagc	ataaaaaaaa	aaaaaaaaa	1260	
aaaaaaaaa	aaaagcagtg	ggttcctgag	ctcaagactt	tgaaggtgta	gggaagagga	1320	
aatcggagat	cccagaagct	tctccactgc	cctatgcatt	tatgttagat	gccccgatcc	1380	
cactggcatt	tgagtgtgca	aaccttgaca	ttaacagctg	aatggggcaa	gttgatgaaa	1440	
acactacttt	caagccttcg	ttcttccttg	agcatctctg	gggaagagct	gtcaaaagac	1500	
tggtggtagg	ctggtgaaaa	cttgacagct	agacttgatg	cttgctgaaa	tgaggcagga	1560	
atcataatag	aaaactcagc	ctccctacag	ggtgagcacc	ttetgteteg	ctgtctccct	1620	
ctgtgcagcc	acagccagag	ggcccagaat	ggccccactc	tgttcccaag	cagttcatga	1680	
tacagcctca	ccttttggcc	ccatctctgg	tttttgaaaa	tttggtctaa	ggaataaata	1740	
gcttttacac	tggctcacga	aaatctgccc	tgctagaatt	tgcttttcaa	aatggaaata	1800	
aattccaact	ctcctaagag	gcatttaatt	aaggetetae	ttccaggttg	agtaggaatc	1860	
cattctgaac	aaactacaaa	aatgtgactg	ggaagggggc	tttgagagac	tgggactgct	1920	
ctgggttagg	ttttctgtgg	actgaaaaat	cgtgtccttt	tctctaaatg	aagtggcatc	1980	
aaggactcag	ggggaaagaa	atcaggggac	atgttataga	agttatgaaa	agacaaccac	2040	
atggtcaggc	tcttgtctgt	ggtctctagg	gctctgcagc	agcagtggct	cttcgattag	2100	
ttaaaactct	cctaggctga	cacatctggg	tctcaatccc	cttggaaatt	cttggtgcat	2160	
taaatgaagc	cttaccccat	tactgcggtt	cttcctgtaa	gggggctcca	ttttcctccc	2220	
tctctttaaa	tgaccaccta	aaggacagta	tattaacaag	caaagtcgat	tcaacaacag	2280	
cttcttccca	gtcacttttt	tttttctcac	tgccatcaca	tactaacctt	atactttgat	2340	
ctattcttt	tggttatgag	agaaatgttg	ggcaactgtt	tttacctgat	ggttttaagc	2400	
tgaacttgaa	ggactggttc	ctattctgaa	acagtaaaac	tatgtataat	agtatatagc	2460	
catgcatggc	aaatatttta	atatttctgt	tttcatttcc	tgttggaaat	attatcctgc	2520	
ataatagcta	ttggaggctc	ctcagtgaaa	gatcccaaaa	ggattttggt	ggaaaactag	2580	
ttgtaatctc	acaaactcaa	cactaccatc	aggggttttc	tttatggcaa	agccaaaata	2640	
gctcctacaa	tttcttatat	ccctcgtcat	gtggcagtat	ttatttattt	atttggaagt	2700	
ttgcctatcc	ttctatattt	atagatattt	ataaaaatgt	aacccctttt	tcctttcttc	2760	
tgtttaaaat	aaaaataaaa	tttatctcag	cttctgttag	cttatcctct	ttgtagtact	2820	
acttaaaagc	atgtcggaat	ataagaataa	aaaggattat	gggaggggaa	cattagggaa	2880	

-continued

atccagagaa ggcaaaattg aaaaaaagat tttagaattt taaaattttc aaagatttct 2940 tocattoata aggagactoa atgattttaa ttgatotaga cagaattatt taagttttat 3000 caatattgga tttctggt 3018 <210> SEQ ID NO 3 <211> LENGTH: 251 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 3 Met Leu Gly Ala Arg Leu Arg Leu Trp Val Cys Ala Leu Cys Ser Val Cys Ser Met Ser Val Leu Arg Ala Tyr Pro Asn Ala Ser Pro Leu Leu Gly Ser Ser Trp Gly Gly Leu Ile His Leu Tyr Thr Ala Thr Ala Arg Asn Ser Tyr His Leu Gln Ile His Lys Asn Gly His Val Asp Gly Ala Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile Arg Ser Glu Asp Ala Gly Phe Val Val Ile Thr Gly Val Met Ser Arg Arg Tyr Leu Cys Met 90 Asp Phe Arg Gly Asn Ile Phe Gly Ser His Tyr Phe Asp Pro Glu Asn 105 Cys Arg Phe Gln His Gln Thr Leu Glu Asn Gly Tyr Asp Val Tyr His Ser Pro Gln Tyr His Phe Leu Val Ser Leu Gly Arg Ala Lys Arg Ala 135 Phe Leu Pro Gly Met Asn Pro Pro Pro Tyr Ser Gln Phe Leu Ser Arg 150 155 Arg Asn Glu Ile Pro Leu Ile His Phe Asn Thr Pro Ile Pro Arg Arg His Thr Arg Ser Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro Arg Ala Arg Met Thr Pro Ala Pro Ala Ser Cys Ser Gln 200 Glu Leu Pro Ser Ala Glu Asp Asn Ser Pro Met Ala Ser Asp Pro Leu Gly Val Val Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe Ile <210> SEQ ID NO 4 <211> LENGTH: 1814 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 4 gaatctagcc caggatcccc acctcagttc tcagcttctt cctaggaaga agagaaaggc 60 cagcaagggc ccagcctgtc tgggagtgtc agatttcaaa ctcagcatta gccactcagt getgtgeaat getagggace tgeettagae teetggtggg egtgetetge aetgtetgea 180 gettgggeae tgetagagee tateeggaea etteeceatt gettggetee aactggggaa

-continued

gcctgaccca cctgtacacg gctacagcca ggaccagcta tcacctacag atccataggg	300
atggtcatgt agatggcacc ccccatcaga ccatctacag tgccctgatg attacatcag	360
aggacgccgg ctctgtggtg ataacaggag ccatgactcg aaggttcctt tgtatggatc	420
tccacggcaa catttttgga tcgcttcact tcagcccaga gaattgcaag ttccgccagt	480
ggacgctgga gaatggctat gacgtctact tgtcgcagaa gcatcactac ctggtgagcc	540
tgggccgcgc caagcgcate ttccagccgg gcaccaacce gccgccctte tcccagttcc	600
tggctcgcag gaacgaggtc ccgctgctgc atttctacac tgttcgccca cggcgccaca	660
egegeagege egaggaecea eeggagegeg acceaetgaa egtgeteaag eegeggeece	720
gcgccacgcc tgtgcctgta tcctgctctc gcgagctgcc gagcgcagag gaaggtggcc	780
ccgcagccag cgatcctctg ggggtgctgc gcagaggccg tggagatgct cgcgggggcg	840
egggaggege ggataggtgt egeceettte eeaggttegt etaggteece aggeeagget	900
gcgtccgcct ccatcctcca gtcggttcag cccacgtaga ggaaggacta gggtacctcg	960
aggatgtctg cttctctccc ttccctatgg gcctgagagt cacctgcgag gttccagcca	1020
ggcaccgcta ttcagaatta agagccaacg gtgggaggct ggagaggtgg cgcagacagt	1080
teteageace cacaaatace tgtaatteta geteeagggg aatetgtaet cacacacaca	1140
cacatccaca cacacacaca cacacataca tgtaatttta aatgttaatc tgatttaaag	1200
accccaacag gtaaactaga cacgaagctc tttttatttt attttactaa caggtaaacc	1260
agacacttgg cctttattag ccgggtctct tgcctagcat tttaatcgat cagttagcac	1320
gaggaaagag ttcacgcctt gaacacaggg aagaggccat ctctgcagct tctagttact	1380
attotgggat toacgggtgt ttgagtttga gcaccttgac cttaatgtot toactaggca	1440
agtogaagaa agacgogoat ttottotott tgggaagago tttggattgg ogggaggotg	1500
acaaggacac ctaaaccgaa cacatttcag agttcagcct ccctgaggaa tgattcgcca	1560
atgattetgt gataggacca gteagtaget tttgaatttg eeetggetea geaaagteta	1620
ccttgctagg gtgttttgca aaatgcaaac gctcgaactc tctctaaaga ggcattttta	1680
gtgaaageet eegetageag gttgaettgt aatatattet aagegaatgt geeeggggtg	1740
ggggtggagg tggggtgggg gagaagggtc cttgagacct cggattgttc taggttaggg	1800
tttctgtgaa gagg	1814
<210> SEQ ID NO 5 <211> LENGTH: 251 <212> TYPE: PRT <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 5	
Met Leu Gly Thr Cys Leu Arg Leu Leu Val Gly Val Leu Cys Thr Val 1 5 10 15	
Cys Ser Leu Gly Thr Ala Arg Ala Tyr Pro Asp Thr Ser Pro Leu Leu 20 25 30	
Gly Ser Asn Trp Gly Ser Leu Thr His Leu Tyr Thr Ala Thr Ala Arg 35 40 45	
Thr Ser Tyr His Leu Gln Ile His Arg Asp Gly His Val Asp Gly Thr 50 55 60	

Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile Thr Ser Glu Asp Ala 65 70 75 80

Gly Ser Val Val Ile Thr Gly Ala Met Thr Arg Arg Phe Leu Cys Met 85 90 95

-continued

 Asp
 Leu
 His
 Gly 100
 Asn 11e
 Phe Gly 105
 Leu 105
 Leu 105
 Leu 110
 Phe Ser 110
 Glu Asn 110
 Asn 120
 <t

<210> SEQ ID NO 6

<211> LENGTH: 5012

<212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 6

cgcgcagcat gcccgccagc gccccgccg gccgccgcg gccgccgccg ccgtcgctgt 60 cgctgctgct ggtgctgctg ggcctgggcg gccgccgcct gcgtgcggag ccgggcgacg 120 gegegeagae etgggeeegt ttetegegge etectgeeee egaggeegeg ggeetettee 180 agggcacctt ccccgacggc ttcctctggg ccgtgggcag cgccgcctac cagaccgagg 240 geggetggea geageaegge aagggtgegt ceatetggga taegtteaee caecaeeeee 300 360 tggcaccccc gggagactcc cggaacgcca gtctgccgtt gggcgccccg tcgccgctgc agecegeeae eggggaegta geeagegaea getaeaaeaa egtetteege gaeaeggagg 420 egetgegega geteggggte aeteactaee getteteeat etegtgggeg egagtgetee ccaatggcag cgcgggcgtc cccaaccgcg aggggctgcg ctactaccgg cgcctgctgg ageggetgeg ggagetggge gtgeageeeg tggteaeeet gtaceaetgg gaeetgeeee agegeetgea ggaegeetae ggeggetggg ceaacegege eetggeegae eactteaggg 660 attacqcqqa qctctqcttc cqccacttcq qcqqtcaqqt caaqtactqq atcaccatcq 720 acaaccccta cgtggtggcc tggcacggct acgccaccgg gcgcctggcc cccggcatcc 780 ggggcagccc gcggctcggg tacctggtgg cgcacaacct cctcctggct catgccaaag 840 totggcatot otacaatact totttoogto coactoaggg aggtcaggtg tocattgcco 900 taagetetea etggateaat eetegaagaa tgaeegaeea eageateaaa gaatgteaaa 960 aatototgga otttgtacta ggttggtttg ocaaacccgt atttattgat ggtgactato 1020 ccgagagcat gaagaataac ctttcatcta ttctgcctga ttttactgaa tctgagaaaa 1080 agtteateaa aggaaetget gaettttttg etetttgett tggaeeeaee ttgagtttte 1140 aacttttgga coctcacatg aagttoogoo aattggaato toocaacotg aggcaactgo

tttcctggat	tgaccttgaa	tttaaccatc	ctcaaatatt	tattgtggaa	aatggctggt	1260
ttgtctcagg	gaccaccaag	agagatgatg	ccaaatatat	gtattacctc	aaaaagttca	1320
tcatggaaac	cttaaaagcc	atcaagctgg	atggggtgga	tgtcatcggg	tataccgcat	1380
ggtccctcat	ggatggtttc	gagtggcaca	gaggttacag	catcaggcgt	ggactcttct	1440
atgttgactt	tctaagccag	gacaagatgt	tgttgccaaa	gtcttcagcc	ttgttctacc	1500
aaaagctgat	agagaaaaat	ggetteeete	ctttacctga	aaatcagccc	ctagaaggga	1560
catttccctg	tgactttgct	tggggagttg	ttgacaacta	cattcaagta	gataccactc	1620
tgtctcagtt	taccgacctg	aatgtttacc	tgtgggatgt	ccaccacagt	aaaaggctta	1680
ttaaagtgga	tggggttgtg	accaagaaga	ggaaatccta	ctgtgttgac	tttgctgcca	1740
tccagcccca	gatcgcttta	ctccaggaaa	tgcacgttac	acattttcgc	ttctccctgg	1800
actgggccct	gattctccct	ctgggtaacc	agtcccaggt	gaaccacacc	atcctgcagt	1860
actatcgctg	catggccagc	gagcttgtcc	gtgtcaacat	caccccagtg	gtggccctgt	1920
ggcagcctat	ggccccgaac	caaggactgc	cgcgcctcct	ggccaggcag	ggcgcctggg	1980
agaaccccta	cactgccctg	gcctttgcag	agtatgcccg	actgtgcttt	caagagctcg	2040
gccatcacgt	caagctttgg	ataacgatga	atgagccgta	tacaaggaat	atgacataca	2100
gtgctggcca	caaccttctg	aaggcccatg	ccctggcttg	gcatgtgtac	aatgaaaagt	2160
ttaggcatgc	tcagaatggg	aaaatatcca	tagccttgca	ggctgattgg	atagaacctg	2220
cctgcccttt	ctcccaaaag	gacaaagagg	tggctgagag	agttttggaa	tttgacattg	2280
gctggctggc	tgagcccatt	tteggetetg	gagattatcc	atgggtgatg	agggactggc	2340
tgaaccaaag	aaacaatttt	cttcttcctt	atttcactga	agatgaaaaa	aagctaatcc	2400
agggtacctt	tgactttttg	gctttaagcc	attataccac	catccttgta	gactcagaaa	2460
aagaagatcc	aataaaatac	aatgattacc	tagaagtgca	agaaatgacc	gacatcacgt	2520
ggctcaactc	ccccagtcag	gtggcggtag	tgccctgggg	gttgcgcaaa	gtgctgaact	2580
ggctgaagtt	caagtacgga	gacctcccca	tgtacataat	atccaatgga	atcgatgacg	2640
ggctgcatgc	tgaggacgac	cagctgaggg	tgtattatat	gcagaattac	ataaacgaag	2700
ctctcaaagc	ccacatactg	gatggtatca	atctttgcgg	atactttgct	tattcgttta	2760
acgaccgcac	ageteegagg	tttggcctct	atcgttatgc	tgcagatcag	tttgagccca	2820
aggcatccat	gaaacattac	aggaaaatta	ttgacagcaa	tggtttcccg	ggcccagaaa	2880
ctctggaaag	attttgtcca	gaagaattca	ccgtgtgtac	tgagtgcagt	ttttttcaca	2940
cccgaaagtc	tttactggct	ttcatagctt	ttctattttt	tgcttctatt	atttctctct	3000
cccttatatt	ttactactcg	aagaaaggca	gaagaagtta	caaatagttc	tgaacatttt	3060
tctattcatt	cattttgaaa	taattatgca	gacacatcag	ctgttaacca	tttgcacctc	3120
taagtgttgt	gaaactgtaa	atttcataca	tttgacttct	agaaaacatt	tttgtggctt	3180
atgacagagg	ttttgaaatg	ggcataggtg	atcgtaaaat	attgaataat	gcgaatagtg	3240
cctgaatttg	ttctcttttt	gggtgattaa	aaaactgaca	ggcactataa	tttctgtaac	3300
acactaacaa	aagcatgaaa	aataggaacc	acaccaatgc	aacatttgtg	cagaaatttg	3360
aatgacaaga	ttaggaatat	tttcttctgc	acccacttct	aaatttaatg	tttttctgga	3420
	gcaagagttc					3480
	cctagtggct					3540
	gagagacgac					3600
Jugacacag	Jagagaegae	5 5	Jy - cyyaac	500000000		2000

-continued

ttctatcaaa	tactagtatt	aatttatgta	tctggttaat	gacatacttg	gagagcaaat	3660
tatggaaatg	tgtattttat	atgatttttg	aggtcctgtc	taaaccctgt	gtccctgagg	3720
gatetgtete	actggcatct	tgttgagggc	cttgcacata	ggaaactttt	gataagtatc	3780
tgcggaaaaa	caaacatgaa	tcctgtgata	ttgggctctt	caggaagcat	aaagcaattg	3840
tgaaatacag	tataccgcag	tggctctagg	tggaggaaag	gaggaaaaag	tgcttattat	3900
gtgcaacatt	atgattaatc	tgattataca	ccatttttga	gcagatcttg	gaatgaatga	3960
catgaccttt	ccctagagaa	taaggatgaa	ataatcactc	attctatgaa	cagtgacact	4020
actttctatt	ctttagctgt	actgtaattt	ctttgagttg	atagttttac	aaattcttaa	4080
taggttcaaa	agcaatctgg	tctgaataac	actggatttg	tttctgtgat	ctctgaggtc	4140
tattttatgt	ttttgctgct	acttctgtgg	aagtagcttt	gaactagttt	tactttgaac	4200
tttcacgctg	aaacatgcta	gtgatatcta	gaaagggcta	attaggtctc	atcctttaat	4260
gccccttaaa	taagtettge	tgattttcag	acagggaagt	ctctctatta	cactggagct	4320
gttttataga	taagtcaata	ttgtatcagg	caagataaac	caatgtcata	acaggcattg	4380
ccaacctcac	tgacacaggg	tcatagtgta	taataatata	ctgtactata	taatatatca	4440
tctttagagg	tatgatttt	tcatgaaaga	taagcttttg	gtaatattca	ttttaaagtg	4500
gacttattaa	aattggatgc	tagagaatca	agtttatttt	atgtatatat	ttttctgatt	4560
ataagagtaa	tatatgttca	ttgtaaaaat	ttttaaaaca	cagaaactat	atgcaaagaa	4620
aaaataaaaa	ttatctataa	tctcagaacc	cagaaatagc	cactattaac	atttcctacg	4680
tattttattt	tacatagatc	atattgtata	tagttagtat	ctttattaat	ttttattatg	4740
aaactttcct	ttgtcattat	tagtcttcaa	aagcatgatt	tttaatagtt	gttgagtatt	4800
ccaccacagg	aatgtatcac	aacttaaccg	ttcccgtttg	ttagactagt	ttcttattaa	4860
tgttgatgaa	tgttgtttaa	aaataatttt	gttgctacat	ttactttaat	ttccttgact	4920
gtaaagagaa	gtaattttgc	tccttgataa	agtattatat	taataataaa	tctgcctgca	4980
actttttgcc	ttctttcata	atcataaaaa	aa			5012
<210> SEQ : <211> LENG: <212> TYPE <213> ORGAN <400> SEQUI	TH: 910 : PRT NISM: Homo	sapiens				
Asp Ser Arg	g Asn Ala S 5	er Leu Pro	Leu Gly Ala 10	Pro Ser Pro	Leu Gln 15	
Pro Ala Thi	r Gly Asp V 20		Asp Ser Tyr 25	Asn Asn Val	. Phe Arg	
Asp Thr Glu	ı Ala Leu A	rg Glu Leu 40	Gly Val Thr	His Tyr Arg	Phe Ser	
Ile Ser Trp	o Ala Arg V	al Leu Pro 55	Asn Gly Ser	Ala Gly Val	. Pro Asn	
Arg Glu Gly	y Leu Arg T 7		Arg Leu Leu 75	Glu Arg Leu	Arg Glu 80	
Leu Gly Va	l Gln Pro V 85	al Val Thr	Leu Tyr His 90	Trp Asp Leu	Pro Gln 95	

Arg Leu Gln Asp Ala Tyr Gly Gly Trp Ala Asn Arg Ala Leu Ala Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

His Phe Arg Asp Tyr Ala Glu Leu Cys Phe Arg His Phe Gly Gly Gln $\,$

		115					120					125			
Val	Lys 130	Tyr	Trp	Ile	Thr	Ile 135	Asp	Asn	Pro	Tyr	Val 140	Val	Ala	Trp	His
Gly 145	Tyr	Ala	Thr	Gly	Arg 150	Leu	Ala	Pro	Gly	Ile 155	Arg	Gly	Ser	Pro	Arg 160
Leu	Gly	Tyr	Leu	Val 165	Ala	His	Asn	Leu	Leu 170	Leu	Ala	His	Ala	Lys 175	Val
Trp	His	Leu	Tyr 180	Asn	Thr	Ser	Phe	Arg 185	Pro	Thr	Gln	Gly	Gly 190	Gln	Val
Ser	Ile	Ala 195	Leu	Ser	Ser	His	Trp 200	Ile	Asn	Pro	Arg	Arg 205	Met	Thr	Asp
His	Ser 210	Ile	Lys	Glu	Cys	Gln 215	Lys	Ser	Leu	Asp	Phe 220	Val	Leu	Gly	Trp
Phe 225	Ala	Lys	Pro	Val	Phe 230	Ile	Asp	Gly	Asp	Tyr 235	Pro	Glu	Ser	Met	Lys 240
Asn	Asn	Leu	Ser	Ser 245	Ile	Leu	Pro	Asp	Phe 250	Thr	Glu	Ser	Glu	Lys 255	Lys
Phe	Ile	Lys	Gly 260	Thr	Ala	Asp	Phe	Phe 265	Ala	Leu	CAa	Phe	Gly 270	Pro	Thr
Leu	Ser	Phe 275	Gln	Leu	Leu	Asp	Pro 280	His	Met	Lys	Phe	Arg 285	Gln	Leu	Glu
Ser	Pro 290	Asn	Leu	Arg	Gln	Leu 295	Leu	Ser	Trp	Ile	Asp	Leu	Glu	Phe	Asn
His 305	Pro	Gln	Ile	Phe	Ile 310	Val	Glu	Asn	Gly	Trp 315	Phe	Val	Ser	Gly	Thr 320
Thr	ГÀа	Arg	Asp	Asp 325	Ala	ГÀв	Tyr	Met	Tyr 330	Tyr	Leu	ГÀа	Lys	Phe 335	Ile
Met	Glu	Thr	Leu 340	Lys	Ala	Ile	Lys	Leu 345	Asp	Gly	Val	Asp	Val 350	Ile	Gly
Tyr	Thr	Ala 355	Trp	Ser	Leu	Met	Asp 360	Gly	Phe	Glu	Trp	His 365	Arg	Gly	Tyr
Ser	Ile 370	Arg	Arg	Gly	Leu	Phe 375	Tyr	Val	Asp	Phe	Leu 380	Ser	Gln	Asp	Lys
Met 385	Leu	Leu	Pro	ГÀа	Ser 390	Ser	Ala	Leu	Phe	Tyr 395	Gln	ГÀа	Leu	Ile	Glu 400
Lys	Asn	Gly	Phe	Pro 405	Pro	Leu	Pro	Glu	Asn 410	Gln	Pro	Leu	Glu	Gly 415	Thr
Phe	Pro	Cys	Asp 420	Phe	Ala	Trp	Gly	Val 425	Val	Asp	Asn	Tyr	Ile 430	Gln	Val
Asp	Thr	Thr 435	Leu	Ser	Gln	Phe	Thr 440	Asp	Leu	Asn	Val	Tyr 445	Leu	Trp	Asp
Val	His 450	His	Ser	ГÀа	Arg	Leu 455	Ile	Lys	Val	Asp	Gly 460	Val	Val	Thr	Lys
Lys 465	Arg	ГÀв	Ser	Tyr	Сув 470	Val	Asp	Phe	Ala	Ala 475	Ile	Gln	Pro	Gln	Ile 480
Ala	Leu	Leu	Gln	Glu 485	Met	His	Val	Thr	His 490	Phe	Arg	Phe	Ser	Leu 495	Asp
Trp	Ala	Leu	Ile 500	Leu	Pro	Leu	Gly	Asn 505	Gln	Ser	Gln	Val	Asn 510	His	Thr
Ile	Leu	Gln 515	Tyr	Tyr	Arg	Сув	Met 520	Ala	Ser	Glu	Leu	Val 525	Arg	Val	Asn
Ile	Thr 530	Pro	Val	Val	Ala	Leu 535	Trp	Gln	Pro	Met	Ala 540	Pro	Asn	Gln	Gly

Leu 545	Pro	Arg	Leu	Leu	Ala 550	Arg	Gln	Gly	Ala	Trp 555	Glu	Asn	Pro	Tyr	Thr 560
Ala	Leu	Ala	Phe	Ala 565	Glu	Tyr	Ala	Arg	Leu 570	Cys	Phe	Gln	Glu	Leu 575	Gly
His	His	Val	580	Leu	Trp	Ile	Thr	Met 585	Asn	Glu	Pro	Tyr	Thr 590	Arg	Asn
Met	Thr	Tyr 595	Ser	Ala	Gly	His	Asn 600	Leu	Leu	Lys	Ala	His 605	Ala	Leu	Ala
Trp	His 610	Val	Tyr	Asn	Glu	Lys 615	Phe	Arg	His	Ala	Gln 620	Asn	Gly	ГЛа	Ile
Ser 625	Ile	Ala	Leu	Gln	Ala 630	Asp	Trp	Ile	Glu	Pro 635	Ala	Сув	Pro	Phe	Ser 640
Gln	Lys	Asp	Lys	Glu 645	Val	Ala	Glu	Arg	Val 650	Leu	Glu	Phe	Asp	Ile 655	Gly
Trp	Leu	Ala	Glu 660	Pro	Ile	Phe	Gly	Ser 665	Gly	Asp	Tyr	Pro	Trp 670	Val	Met
Arg	Asp	Trp 675	Leu	Asn	Gln	Arg	Asn 680	Asn	Phe	Leu	Leu	Pro 685	Tyr	Phe	Thr
Glu	Asp	Glu	Lys	Lys	Leu	Ile 695	Gln	Gly	Thr	Phe	Asp 700	Phe	Leu	Ala	Leu
Ser 705	His	Tyr	Thr	Thr	Ile 710	Leu	Val	Asp	Ser	Glu 715	Lys	Glu	Asp	Pro	Ile 720
Lys	Tyr	Asn	Asp	Tyr 725	Leu	Glu	Val	Gln	Glu 730	Met	Thr	Asp	Ile	Thr 735	Trp
Leu	Asn	Ser	Pro 740	Ser	Gln	Val	Ala	Val 745	Val	Pro	Trp	Gly	Leu 750	Arg	Lys
Val	Leu	Asn 755	Trp	Leu	Lys	Phe	Lys 760	Tyr	Gly	Asp	Leu	Pro 765	Met	Tyr	Ile
Ile	Ser 770	Asn	Gly	Ile	Asp	Asp 775	Gly	Leu	His	Ala	Glu 780	Asp	Asp	Gln	Leu
Arg 785	Val	Tyr	Tyr	Met	Gln 790	Asn	Tyr	Ile	Asn	Glu 795	Ala	Leu	Lys	Ala	His 800
Ile	Leu	Asp	Gly	Ile 805	Asn	Leu	Cys	Gly	Tyr 810	Phe	Ala	Tyr	Ser	Phe 815	Asn
Asp	Arg	Thr	Ala 820	Pro	Arg	Phe	Gly	Leu 825	Tyr	Arg	Tyr	Ala	Ala 830	Asp	Gln
Phe	Glu	Pro 835	Lys	Ala	Ser	Met	Lys 840	His	Tyr	Arg	Lys	Ile 845	Ile	Asp	Ser
Asn	Gly 850	Phe	Pro	Gly	Pro	Glu 855	Thr	Leu	Glu	Arg	Phe 860	CAa	Pro	Glu	Glu
Phe 865	Thr	Val	Cys	Thr	Glu 870	Cys	Ser	Phe	Phe	His 875	Thr	Arg	Lys	Ser	Leu 880
Leu	Ala	Phe	Ile	Ala 885	Phe	Leu	Phe	Phe	Ala 890	Ser	Ile	Ile	Ser	Leu 895	Ser
Leu	Ile	Phe	Tyr 900	Tyr	Ser	Lys	Lys	Gly 905	Arg	Arg	Ser	Tyr	Lys 910		
<210	0> SI	EQ II	ои с	8											

<400> SEQUENCE: 8

<210> SEQ ID NO 8 <211> LENGTH: 5917 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

120	aaggcccagc	ggggaactac	ggccgcggct	cgtcctttgg	gcccgctccc	ggacagctcg
180	gagagagcga	gggtgggagt	ggaccagcgc	ggcggaggag	agggggcgga	aggcagctgc
240	ggegeggegt	tgcggccaca	ggagcgctct	catagegete	cccgccggcg	gccctcgcgc
300	agcgcgcgga	gtgcagccgc	cgggacgccg	tagcgggagc	gggcggcagc	cctcggcggc
360	acccctcgta	cgggaccgag	cacgtccgga	getgggegge	tgtgccggga	ggaacccggg
420	aaaagccgcg	ccgctgcttg	cgcgagcgcg	cttccccggc	gcgacctcgc	gcgcattgcg
480	acggtacccg	cgcagggcgc	cggggcgccc	ggtccgagct	acttttctcc	gaacccaagg
540	cccggtctgc	ggcgatggag	gcctccgcag	cggcgccggg	gggcacgccg	tgctgcagtc
600	ctggagaccc	ggcacaaggt	ggaggagggg	getgegttet	aggegeegee	aaggaaagtg
660	ccggctccat	ggcaccagct	cegeeteegg	teeceeegee	acgggagccc	cgggtggcgg
720	agegeeggee	ccgggagtcg	ccgagcgccg	gegeegagea	cgggctggag	tgttcccgcc
780	ggccggagcc	gggggcggcg	aacagagccc	ccaggacccg	tgcgaccccg	gcggagctct
840	ggcggaacct	actctcccga	gccacggcgg	gctcgcacaa	gcacacgccc	ggggacgcgg
900	gtatccatgg	tcactgtgga	aggatcgagc	tttgaaaagg	cgagggtcag	ccacgccgag
960	ctggaagtgc	ggatgtggag	tgcagaactg	aacctctaac	ccttgtcacc	agatgtggag
1020	gtccccgacc	ccgctaggcc	acactctgca	ggtcacagcc	gggctgtgct	ctcctcttct
1080	cctggtccac	tggagtcctt	cctgtggaag	ctggggagcc	aagcccagcc	ttgcctgaac
1140	catcaactgg	atgtgcagag	ctgcgggacg	tegetgtegg	tgctgcagct	cccggtgacc
1200	ggaggaggtg	gcatcacagg	aaccgcaccc	ggcggaaagc	gggtgcagct	ctgcgggacg
1260	cagcagcccc	cttgcgtaac	ggcctctatg	cgcagactcc	actccgtgcc	gaggtgcagg
1320	ctcctcggag	atgctctccc	aatgtttcag	cttctccgtc	acaccaccta	tcgggcagtg
1380	caccaaacca	aaacagataa	gaggagaaag	ctcctcttca	atgatgatga	gatgatgatg
1440	gaaattgcat	agatggaaaa	tccccagaaa	atattggaca	ccgtagctcc	aaccgtatgc
1500	cccaaacccc	ccagtgggac	aaatgccctt	agtgaagttc	ctgccaagac	gcagtgccgg
1560	tggaggctac	accacagaat	ttcaaacctg	tggcaaagaa	ggttgaaaaa	acactgcgct
1620	tgacaagggc	tggtgccctc	atggactctg	gagcatcata	atgccacctg	aaggtccgtt
1680	ccagctggat	accacacata	ggcagcatca	gaatgagtac	gcattgtgga	aactacacct
1740	caacaaaaca	ggttgcccgc	ctgcaagcag	ccggcccatc	ggtcccctca	gtcgtggagc
1800	gcagccgcac	acagtgaccc	tgtaaggtgt	ggagttcatg	gtagcaacgt	gtggccctgg
1860	caacctgcct	ttggcccaga	gggagcaaga	cgaggtgaat	taaagcacat	atccagtggc
1920	ggaggtgctt	acaaagagat	aataccaccg	tgctggagtt	tcttgaagac	tatgtccaga
1980	gggtaactct	cgtgcttggc	ggggagtata	tgaggacgca	atgtctcctt	cacttaagaa
2040	agagaggccg	aagccctgga	accgttctgg	tgcatggttg	cccatcactc	atcggactct
2100	ggccttcctc	attgcacagg	atcatcatct	gtacctggag	cctcgcccct	gcagtgatga
2160	caagaagagt	agagtggtac	tacaagatga	ggtcatcgtc	tggtggggtc	atctcctgca
2220	gcgcagacag	gcatccctct	ctggccaaga	tgtgcacaag	gccagatggc	gacttccaca
2280	ggttcggcca	gggttettet	atgaactctg	cagtgcatcc	ctgctgactc	gtaacagtgt
2340	tgagcttccc	tctctgagta	ctagcagggg	gactcccatg	cctccagtgg	tcacggctct
2400				gcctcgggac		
						-

ggctgctttg ggcaggtggt	gttggcagag	gctatcgggc	tggacaagga	caaacccaac	2460
cgtgtgacca aagtggctgt	gaagatgttg	aagtcggacg	caacagagaa	agacttgtca	2520
gacctgatct cagaaatgga	gatgatgaag	atgatcggga	agcataagaa	tatcatcaac	2580
ctgctggggg cctgcacgca	ggatggtccc	ttgtatgtca	tcgtggagta	tgcctccaag	2640
ggcaacctgc gggagtacct	gcaggcccgg	aggcccccag	ggctggaata	ctgctacaac	2700
cccagccaca acccagagga	gcagctctcc	tccaaggacc	tggtgtcctg	cgcctaccag	2760
gtggcccgag gcatggagta	tetggeetee	aagaagtgca	tacaccgaga	cctggcagcc	2820
aggaatgtcc tggtgacaga	ggacaatgtg	atgaagatag	cagactttgg	cctcgcacgg	2880
gacattcacc acatcgacta	ctataaaaag	acaaccaacg	gccgactgcc	tgtgaagtgg	2940
atggcacccg aggcattatt	tgaccggatc	tacacccacc	agagtgatgt	gtggtctttc	3000
ggggtgctcc tgtgggagat	cttcactctg	ggcggctccc	cataccccgg	tgtgcctgtg	3060
gaggaacttt tcaagctgct	gaaggagggt	caccgcatgg	acaagcccag	taactgcacc	3120
aacgagctgt acatgatgat	gcgggactgc	tggcatgcag	tgccctcaca	gagacccacc	3180
ttcaagcagc tggtggaaga	cctggaccgc	atcgtggcct	tgacctccaa	ccaggagtac	3240
ctggacctgt ccatgcccct	ggaccagtac	tececcaget	ttcccgacac	ccggagctct	3300
acgtgctcct caggggagga	ttccgtcttc	tctcatgagc	cgctgcccga	ggagccctgc	3360
ctgccccgac acccagccca	gcttgccaat	ggcggactca	aacgccgctg	actgccaccc	3420
acacgccctc cccagactcc	accgtcagct	gtaaccctca	cccacagccc	ctgctgggcc	3480
caccacctgt ccgtccctgt	cccctttcct	gctggcagga	gccggctgcc	taccaggggc	3540
cttcctgtgt ggcctgcctt	caccccactc	agctcacctc	tccctccacc	tcctctccac	3600
ctgctggtga gaggtgcaaa	gaggcagatc	tttgctgcca	gccacttcat	cccctcccag	3660
atgttggacc aacacccctc	cctgccacca	ggcactgcct	ggagggcagg	gagtgggagc	3720
caatgaacag gcatgcaagt	gagagettee	tgagctttct	cctgtcggtt	tggtctgttt	3780
tgccttcacc cataagcccc	tegeactetg	gtggcaggtg	ccttgtcctc	agggctacag	3840
cagtagggag gtcagtgctt	cgtgcctcga	ttgaaggtga	cctctgcccc	agataggtgg	3900
tgccagtggc ttattaattc	cgatactagt	ttgctttgct	gaccaaatgc	ctggtaccag	3960
aggatggtga ggcgaaggcc	aggttggggg	cagtgttgtg	geeetgggge	ccagccccaa	4020
actgggggct ctgtatatag	ctatgaagaa	aacacaaagt	gtataaatct	gagtatatat	4080
ttacatgtct ttttaaaagg	gtcgttacca	gagatttacc	catcgggtaa	gatgctcctg	4140
gtggctggga ggcatcagtt	gctatatatt	aaaaacaaaa	aagaaaaaaa	aggaaaatgt	4200
ttttaaaaag gtcatatatt	ttttgctact	tttgctgttt	tatttttta	aattatgttc	4260
taaacctatt ttcagtttag	gtccctcaat	aaaaattgct	gctgcttcat	ttatctatgg	4320
gctgtatgaa aagggtggga	atgtccactg	gaaagaaggg	acacccacgg	gccctggggc	4380
taggtctgtc ccgagggcac	cgcatgctcc	cggcgcaggt	tccttgtaac	ctcttcttcc	4440
taggtcctgc acccagacct	cacgacgcac	ctcctgcctc	teegetgett	ttggaaagtc	4500
agaaaaagaa gatgtctgct	tegagggeag	gaaccccatc	catgcagtag	aggcgctggg	4560
cagagagtca aggcccagca	gccatcgacc	atggatggtt	tcctccaagg	aaaccggtgg	4620
ggttgggctg gggaggggg	acctacctag	gaatagccac	ggggtagagc	tacagtgatt	4680
aagaggaaag caagggcgcg	gttgctcacg	cctgtaatcc	cagcactttg	ggacaccgag	4740
gtgggcagat cacttcaggt	caggagtttg	agaccagcct	ggccaactta	gtgaaacccc	4800

-continued

atctctacta	aaaatgcaaa	aattatccag	gcatggtggc	acacgcctgt	aatcccagct	4860	
ccacaggagg	ctgaggcaga	atcccttgaa	gctgggaggc	ggaggttgca	gtgagccgag	4920	
attgcgccat	tgcactccag	cctgggcaac	agagaaaaca	aaaaggaaaa	caaatgatga	4980	
aggtctgcag	aaactgaaac	ccagacatgt	gtctgccccc	tctatgtggg	catggttttg	5040	
ccagtgcttc	taagtgcagg	agaacatgtc	acctgaggct	agttttgcat	tcaggtccct	5100	
ggcttcgttt	cttgttggta	tgcctcccca	gatcgtcctt	cctgtatcca	tgtgaccaga	5160	
ctgtatttgt	tgggactgtc	gcagatettg	gcttcttaca	gttcttcctg	tccaaactcc	5220	
atcctgtccc	tcaggaacgg	ggggaaaatt	ctccgaatgt	ttttggtttt	ttggctgctt	5280	
ggaatttact	tetgecacet	gctggtcatc	actgtcctca	ctaagtggat	tetggeteee	5340	
ccgtacctca	tggctcaaac	taccactcct	cagtcgctat	attaaagctt	atattttgct	5400	
ggattactgc	taaatacaaa	agaaagttca	atatgttttc	atttctgtag	ggaaaatggg	5460	
attgctgctt	taaatttctg	agctagggat	tttttggcag	ctgcagtgtt	ggcgactatt	5520	
gtaaaattct	ctttgtttct	ctctgtaaat	agcacctgct	aacattacaa	tttgtattta	5580	
tgtttaaaga	aggcatcatt	tggtgaacag	aactaggaaa	tgaattttta	gctcttaaaa	5640	
gcatttgctt	tgagaccgca	caggagtgtc	tttccttgta	aaacagtgat	gataatttct	5700	
gccttggccc	taccttgaag	caatgttgtg	tgaagggatg	aagaatctaa	aagtcttcat	5760	
aagtccttgg	gagaggtgct	agaaaaatat	aaggcactat	cataattaca	gtgatgtcct	5820	
tgctgttact	actcaaatca	cccacaaatt	tccccaaaga	ctgcgctagc	tgtcaaataa	5880	
aagacagtga	aattgacctg	aaaaaaaaa	aaaaaaa			5917	
<210> SEQ ID NO 9 <211> LENGTH: 822 <212> TYPE: PRT <213> ORGANISM: Homo sapiens							

<400> SEQUENCE: 9

Met Trp Ser Trp Lys Cys Leu Leu Phe Trp Ala Val Leu Val Thr Ala 1 $$ 5 $$ 10 $$ 15

Thr Leu Cys Thr Ala Arg Pro Ser Pro Thr Leu Pro Glu Gln Ala Gln

Pro Trp Gly Ala Pro Val Glu Val Glu Ser Phe Leu Val His Pro Gly

Asp Leu Leu Gln Leu Arg Cys Arg Leu Arg Asp Asp Val Gln Ser Ile 50 $\,$

Asn Trp Leu Arg Asp Gly Val Gln Leu Ala Glu Ser Asn Arg Thr Arg 65 7070757575

Ile Thr Gly Glu Glu Val Glu Val Gln Asp Ser Val Pro Ala Asp Ser 85 90 95

Gly Leu Tyr Ala Cys Val Thr Ser Ser Pro Ser Gly Ser Asp Thr Thr 105

Tyr Phe Ser Val Asn Val Ser Asp Ala Leu Pro Ser Ser Glu Asp Asp 120

Asp Asp Asp Asp Ser Ser Ser Glu Glu Lys Glu Thr Asp Asn Thr 135

Lys Pro Asn Arg Met Pro Val Ala Pro Tyr Trp Thr Ser Pro Glu Lys 150 155

Met Glu Lys Lys Leu His Ala Val Pro Ala Ala Lys Thr Val Lys Phe 170

-continued

_															
ГÀа	Сла	Pro	Ser 180	Ser	Gly	Thr	Pro	Asn 185	Pro	Thr	Leu	Arg	Trp 190	Leu	Lys
Asn	Gly	Lys 195	Glu	Phe	Lys	Pro	Asp 200	His	Arg	Ile	Gly	Gly 205	Tyr	Lys	Val
Arg	Tyr 210	Ala	Thr	Trp	Ser	Ile 215	Ile	Met	Asp	Ser	Val 220	Val	Pro	Ser	Asp
Lys 225	Gly	Asn	Tyr	Thr	Cys 230	Ile	Val	Glu	Asn	Glu 235	Tyr	Gly	Ser	Ile	Asn 240
His	Thr	Tyr	Gln	Leu 245	Asp	Val	Val	Glu	Arg 250	Ser	Pro	His	Arg	Pro 255	Ile
Leu	Gln	Ala	Gly 260	Leu	Pro	Ala	Asn	Lув 265	Thr	Val	Ala	Leu	Gly 270	Ser	Asn
Val	Glu	Phe 275	Met	CAa	Lys	Val	Tyr 280	Ser	Asp	Pro	Gln	Pro 285	His	Ile	Gln
Trp	Leu 290	ГЛа	His	Ile	Glu	Val 295	Asn	Gly	Ser	Lys	Ile 300	Gly	Pro	Asp	Asn
Leu 305	Pro	Tyr	Val	Gln	Ile 310	Leu	ГÀв	Thr	Ala	Gly 315	Val	Asn	Thr	Thr	Asp 320
ГÀа	Glu	Met	Glu	Val 325	Leu	His	Leu	Arg	Asn 330	Val	Ser	Phe	Glu	Asp 335	Ala
Gly	Glu	Tyr	Thr 340	CÀa	Leu	Ala	Gly	Asn 345	Ser	Ile	Gly	Leu	Ser 350	His	His
Ser	Ala	Trp 355	Leu	Thr	Val	Leu	Glu 360	Ala	Leu	Glu	Glu	Arg 365	Pro	Ala	Val
Met	Thr 370	Ser	Pro	Leu	Tyr	Leu 375	Glu	Ile	Ile	Ile	Tyr 380	CAa	Thr	Gly	Ala
Phe 385	Leu	Ile	Ser	СЛа	Met 390	Val	Gly	Ser	Val	Ile 395	Val	Tyr	ГÀа	Met	Lys 400
Ser	Gly	Thr	ГÀз	Lys 405	Ser	Asp	Phe	His	Ser 410	Gln	Met	Ala	Val	His 415	Lys
Leu	Ala	Lys	Ser 420	Ile	Pro	Leu	Arg	Arg 425	Gln	Val	Thr	Val	Ser 430	Ala	Asp
Ser	Ser	Ala 435	Ser	Met	Asn	Ser	Gly 440	Val	Leu	Leu	Val	Arg 445	Pro	Ser	Arg
Leu	Ser 450	Ser	Ser	Gly	Thr	Pro 455	Met	Leu	Ala	Gly	Val 460	Ser	Glu	Tyr	Glu
Leu 465	Pro	Glu	Asp	Pro	Arg 470	Trp	Glu	Leu	Pro	Arg 475	Asp	Arg	Leu	Val	Leu 480
Gly	Lys	Pro	Leu	Gly 485	Glu	Gly	CÀa	Phe	Gly 490	Gln	Val	Val	Leu	Ala 495	Glu
Ala	Ile	Gly	Leu 500	Asp	Lys	Asp	Lys	Pro 505	Asn	Arg	Val	Thr	Lys 510	Val	Ala
Val	Lys	Met 515	Leu	Lys	Ser	Asp	Ala 520	Thr	Glu	Lys	Asp	Leu 525	Ser	Aap	Leu
Ile	Ser 530	Glu	Met	Glu	Met	Met 535	Lys	Met	Ile	Gly	Lys 540	His	Lys	Asn	Ile
Ile 545	Asn	Leu	Leu	Gly	Ala 550	CÀa	Thr	Gln	Asp	Gly 555	Pro	Leu	Tyr	Val	Ile 560
Val	Glu	Tyr	Ala	Ser 565	Lys	Gly	Asn	Leu	Arg 570	Glu	Tyr	Leu	Gln	Ala 575	Arg
Arg	Pro	Pro	Gly 580	Leu	Glu	Tyr	СЛа	Tyr 585	Asn	Pro	Ser	His	Asn 590	Pro	Glu

-continued

Glu Gln Leu Ser Ser Lys Asp Leu Val Ser Cys Ala Tyr Gln Val Ala 600 Arg Gly Met Glu Tyr Leu Ala Ser Lys Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Thr Glu Asp Asn Val Met Lys Ile Ala Asp Phe Gly Leu Ala Arg Asp Ile His His Ile Asp Tyr Tyr Lys Lys Thr Thr Asn Gly Arg Leu Pro Val Lys Trp Met Ala Pro Glu Ala Leu Phe Asp Arg Ile Tyr Thr His Gln Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Thr Leu Gly Gly Ser Pro Tyr Pro Gly Val Pro Val Glu Glu Leu Phe Lys Leu Leu Lys Glu Gly His Arg Met Asp 710 Lys Pro Ser Asn Cys Thr Asn Glu Leu Tyr Met Met Arg Asp Cys $725 \hspace{1cm} 730 \hspace{1cm} 735$ Trp His Ala Val Pro Ser Gln Arg Pro Thr Phe Lys Gln Leu Val Glu 745 Asp Leu Asp Arg Ile Val Ala Leu Thr Ser Asn Gln Glu Tyr Leu Asp 760 Leu Ser Met Pro Leu Asp Gln Tyr Ser Pro Ser Phe Pro Asp Thr Arg 775 Ser Ser Thr Cys Ser Ser Gly Glu Asp Ser Val Phe Ser His Glu Pro Leu Pro Glu Glu Pro Cys Leu Pro Arg His Pro Ala Gln Leu Ala Asn 810 Gly Gly Leu Lys Arg Arg 820 <210> SEQ ID NO 10 <211> LENGTH: 224 <212> TYPE: PRT <213 > ORGANISM: Homo sapiens <400> SEQUENCE: 10 Ala Ser Pro Leu Leu Gly Ser Ser Trp Gly Gly Leu Ile His Leu Tyr Thr Ala Thr Ala Arg Asn Ser Tyr His Leu Gln Ile His Lys Asn Gly His Val Asp Gly Ala Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile Arg Ser Glu Asp Ala Gly Phe Val Val Ile Thr Gly Val Met Ser Arg Arg Tyr Leu Cys Met Asp Phe Arg Gly Asn Ile Phe Gly Ser His Tyr Phe Asp Pro Glu Asn Cys Arg Phe Gln His Gln Thr Leu Glu Asn Gly Tyr Asp Val Tyr His Ser Pro Gln Tyr His Phe Leu Val Ser Leu Gly Arg Ala Lys Arg Ala Phe Leu Pro Gly Met Asn Pro Pro Pro Tyr Ser 120 125 Gln Phe Leu Ser Arg Arg Asn Glu Ile Pro Leu Ile His Phe Asn Thr 135 140

```
Pro Ile Pro Arg Arg His Thr Arg Ser Ala Glu Asp Asp Ser Glu Arg
                  150
                                      155
Asp Pro Leu Asn Val Leu Lys Pro Arg Ala Arg Met Thr Pro Ala Pro
               165
                                   170
Ala Ser Cys Ser Gln Glu Leu Pro Ser Ala Glu Asp Asn Ser Pro Met
Ala Ser Asp Pro Leu Gly Val Val Arg Gly Gly Arg Val Asn Thr His
              200
Ala Gly Gly Thr Gly Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe Ile
<210> SEQ ID NO 11
<211> LENGTH: 72
<212> TYPE: PRT
<213 > ORGANISM: Homo sapiens
<400> SEQUENCE: 11
Ser Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro
Arg Ala Arg Met Thr Pro Ala Pro Ala Ser Cys Ser Gln Glu Leu Pro
Ser Ala Glu Asp Asn Ser Pro Met Ala Ser Asp Pro Leu Gly Val Val
                         40
Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly Pro Glu Gly
                      55
Cys Arg Pro Phe Ala Lys Phe Ile
<210> SEQ ID NO 12
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 12
Ser Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro
1
                                   10
Arg Ala Arg Met Thr Pro Ala Pro Ala Ser
<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: primer
<400> SEQUENCE: 13
tgatttgcat tctccaccaa
                                                                     20
<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 14
cttctccccg cttttcttct
                                                                     20
```

<210> SEQ ID NO 15

-continued

<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial <220> FEATURE:		
<223> OTHER INFORMATION: primer		
Plane		
<400> SEQUENCE: 15		
tatgggccag atggattacc	20	
<210> SEQ ID NO 16 <211> LENGTH: 20		
<211> LENGTH: 20 <212> TYPE: DNA		
<213> ORGANISM: Artificial		
<220> FEATURE:		
<223> OTHER INFORMATION: primer		
<400> SEQUENCE: 16		
gcacgtatac tececageat	20	
.010. CEO ID NO 17		
<210> SEQ ID NO 17 <211> LENGTH: 20		
<211> HERGIN: 20 <212> TYPE: DNA		
<213> ORGANISM: Artificial		
<220> FEATURE:		
<223> OTHER INFORMATION: primer		
<400> SEQUENCE: 17		
acctggtgtc ctgtgcctac	20	
<210> SEQ ID NO 18		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial		
<220> FEATURE: <223> OTHER INFORMATION: primer		
<400> SEQUENCE: 18		
cattogatgg coctotttta	20	
<210> SEQ ID NO 19		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial		
<220> FEATURE:		
<223> OTHER INFORMATION: primer		
<400> SEQUENCE: 19		
ctgaagcaca tcgaggtcaa	20	
<210> SEQ ID NO 20		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial <220> FEATURE:		
<223> OTHER INFORMATION: primer		
-400, CEOHENCE, 20		
<400> SEQUENCE: 20		
cctgactcca gggagaactg	20	
.210. CEO ID NO 21		
<210> SEQ ID NO 21 <211> LENGTH: 20		
<211> LENGTH: 20 <212> TYPE: DNA		
<213> ORGANISM: Artificial		
<220> FEATURE:		
<223> OTHER INFORMATION: primer		
<400> SEQUENCE: 21		

83 -continued

agccctcgaa agatgactga	20	
<210 > SEQ ID NO 22 <211 > LENGTH: 20 <212 > TYPE: DNA <213 > ORGANISM: Artificial <220 > FEATURE: <223 > OTHER INFORMATION: primer		
<400> SEQUENCE: 22		
acaaaccagc cattctccac	20	
<210 > SEQ ID NO 23 <211 > LENGTH: 20 <212 > TYPE: DNA <213 > ORGANISM: Artificial <220 > FEATURE: <223 > OTHER INFORMATION: primer		
<400> SEQUENCE: 23		
gtgggggatg aggcccagag	20	
<210 > SEQ ID NO 24 <211 > LENGTH: 20 <212 > TYPE: DNA <213 > ORGANISM: Artificial <220 > FEATURE: <223 > OTHER INFORMATION: primer		
<400> SEQUENCE: 24		
agctgtggtg gtgaaactgt	20	

35

What is claimed:

- 1. A pharmaceutical composition comprising:
- a peptide comprising at least a portion corresponding to the C-terminus of FGF23, wherein the portion corresponding to the C-terminus of FGF23 consists of the amino 40 acid sequence of SEQ ID NO:12 and
- an additive, wherein the additive is a vitamin D receptor agonist and is formulated in combination with said peptide for simultaneous administration.
- 2. The pharmaceutical composition according to claim 1, 45 wherein the peptide consists of SEQ ID NO:12.
- 3. The pharmaceutical composition according to claim 1 further comprising a pharmaceutically acceptable carrier.

- **4**. The pharmaceutical composition according to claim **1**, wherein the composition is in the form of a tablet, capsule, powder, solution, suspension, or emulsion.
- 5. The pharmaceutical composition according to claim 1, wherein the composition is formulated for administration to a subject orally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation, by implantation, by intracavitary or intravesical instillation, intraocularly, intraarterially, intralesionally, transdermally, or by application to mucous membranes.
- **6**. The pharmaceutical composition according to claim **1**, wherein the additive is vitamin D.

* * * * *